Description Usage Arguments Value Examples
Perform an Generalized Additive Anchor Regression
1 2 3 4 5 6 7 8 | anchor_regression_gam(
x,
anchor,
gamma,
target_variable,
bin_factor = NULL,
force_binary = TRUE
)
|
x |
is a dataframe containing the matrix x containing the independent variables |
anchor |
is a dataframe containing the matrix anchor containing the anchor variable |
gamma |
is the regularization parameter for the Anchor Regression |
target_variable |
is the target variable name contained in the x dataframe |
bin_factor |
factor variable that can be transformed to a factor to partial out effects |
force_binary |
if set to TRUE forces bin_factor to be binary |
A list with coefficient values and a list with the respective names overview_print
. Additionally the transformed data as x and y plus the fixed lambda coefficient.
1 2 3 4 5 6 7 | x <- as.data.frame(matrix(data = rnorm(10000),nrow = 1000,ncol = 10))
x$bin <- sample(nrow(x),x = c(1,0),prob = c(0.5,0.5),replace = TRUE)
anchor <- as.data.frame(matrix(data = rnorm(2000),nrow = 1000,ncol = 2))
colnames(anchor) <- c('X1','X2')
gamma <- 2
target_variable <- 'V2'
anchor_regression_gam(x, anchor, gamma, target_variable,bin_factor = "bin")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.