Description Usage Value See Also Examples
View source: R/metabolite_identification.R
Function lcms_spectral_sig_features takes a MAIT-class object and obtains which of the variables are significant given a p-value threshold. The parameters of the significant features can ve printed to an output table (TRUE by default). Depending on the number of classes in the data, the function chooses between using ANOVA test or T-Student test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
A MAIT-class object containing the significant features of the scores slot of MAIT-class object used as an input.
Other metabolite identification functions:
lcms_identify_metabolites()
,
lcms_peak_annotation()
,
lcms_peak_table_boxplots()
,
lcms_peak_table_pca()
,
lcms_raw_data()
,
lcms_sig_peaks_table()
,
lcms_to_mait()
,
lcms_write_parameter_table()
Other dataset_peak_table functions:
lcms_dataset_load()
,
lcms_identify_metabolites()
,
lcms_peak_annotation()
,
lcms_peak_table_boxplots()
,
lcms_peak_table_pca()
,
lcms_plot_tics()
,
lcms_raw_data()
,
lcms_sig_peaks_table()
,
lcms_tics()
,
lcms_to_mait()
Other import/export functions:
lcms_convert_ipo_to_xcms()
,
lcms_dataset_load()
,
lcms_dataset_save()
,
lcms_identify_metabolites()
,
lcms_meta_export()
,
lcms_meta_read()
,
lcms_peak_annotation()
,
lcms_raw_data()
,
lcms_read_ipo_to_xcms()
,
lcms_read_samples()
,
lcms_rearrange_datafiles_by_class()
,
lcms_sig_peaks_table()
,
lcms_to_mait()
,
lcms_write_opt_params()
,
lcms_write_parameter_table()
,
phData()
1 2 3 4 5 6 7 8 9 10 | ## Not run:
file_name <- system.file("extdata", "peak_table_ann.rds", package = "AlpsLCMS")
peak_table <- base::readRDS(file_name)
peak_table_sig_ann <- lcms_spectral_sig_features(MAIT.object = peak_table,
pvalue=0.05,
p.adj="none",
scale=FALSE)
print(peak_table_sig_ann)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.