#' @import readxl
#' @export
getDataSIVIC<-function(file,workingdirectory,level){
sivicdrees_tb <- readxl::read_xlsx(file, sheet = level)
namecol<-substr(level, 1,3)
sivicdrees_tb <- sivicdrees_tb %>%
select(ends_with(namecol), date, statut, ends_with("_mean"))
sivicdrees_tb$date <- as.Date(sivicdrees_tb$date)
deces <- sivicdrees_tb %>% filter(statut == "D\u00e9c\u00e8s") %>%
mutate("death_inflow_from_rea" = predict_from_rea_mean,
"death_inflow_from_hospit" = predict_entrees_mean - predict_from_rea_mean) %>%
select(-starts_with("predict_"), -statut)
rad <- sivicdrees_tb %>% filter(statut == "Retour \u00e0 domicile") %>%
mutate("recovered_inflow_from_rea" = predict_from_rea_mean,
"recovered_inflow_from_hospit" = predict_entrees_mean - predict_from_rea_mean) %>%
select(-starts_with("predict_"), -statut)
rea <- sivicdrees_tb %>% filter(statut == "R\u00e9animation/SI") %>%
mutate("ICU_inflow" = predict_entrees_mean,
"ICU_outflow" = predict_sorties_mean) %>%
select(-starts_with("predict_"), -statut)
hospit <- sivicdrees_tb %>% filter(statut == "Toutes hospitalisations") %>%
mutate("hospit_inflow" = predict_entrees_mean,
"hospit_outflow" = predict_sorties_mean) %>%
select(-starts_with("predict_"), -statut)
sivic_dress <- deces %>% full_join(rad, by = c(namecol, "date")) %>%
full_join(rea, by = c(namecol, "date")) %>%
full_join(hospit, by = c(namecol, "date"))
sivic_dress<-as.data.frame(sivic_dress)
write.table(sivic_dress,file=paste(workingdirectory,"SIVIC_",level,"_",date,".txt",sep=""),sep="\t",row.names = F,quote=F)
return(sivic_dress)
}
getDataCIRE<-function(file,workingdirectory){
cire_tb <- readxl::read_xlsx(file, sheet = "suivi_cas_conf_NA")
cire_tb[cire_tb$Nb == 2237, "d\u00e9partement site preleveur"] <- 33
cire_tb[cire_tb$Nb == 3872, "d\u00e9partement site preleveur"] <- 33
cire_tb <- cire_tb %>%
select(-c("Nb", "sexe", "date de naissance", "age", "CP", "COMMUNE", "labo test",
"site preleveur", "date d\u00e9but des symptomes",
"rea (0ui/n0n)", "hospitalisation (0ui/n0n/s0rti)")) %>%
rename("dep" = "D\u00e9partement de r\u00e9sidence") %>%
mutate(date = as.Date(date_labo)) %>%
select(-date_labo) %>%
select(-EHPAD) %>%
group_by(date, dep) %>%
arrange(date, dep)
departements_NA <- c("16", "17", "19", "23", "24", "33", "40", "47", "64", "79", "86", "87")
bool_rep_dep_cire <- !(cire_tb %>% pull("dep") %in% departements_NA) & (cire_tb %>% pull("d\u00e9partement site preleveur") %in% departements_NA)
cire_tb[bool_rep_dep_cire, "dep"] <- cire_tb[bool_rep_dep_cire, "d\u00e9partement site preleveur"]
cire_tb[is.na(cire_tb$dep), "dep"] <- cire_tb[is.na(cire_tb$dep), "d\u00e9partement site preleveur"]
cire_tb <- cire_tb[!is.na(cire_tb$dep), ]
cire_tb <- cire_tb %>%
select(-"d\u00e9partement site preleveur") %>%
summarise(PCRpositive_inflow = n())
cire_tb$dep <- as.character(cire_tb$dep)
date_cire <- seq.Date(from = min(sivic_dress$date), to = max(cire_tb$date), by=1)
cire_df <- cbind.data.frame(dep = rep(departements_NA, times=length(date_cire)),
date = rep(date_cire, each=length(departements_NA)),
PCRpositive_inflow = 0)
cire_df <- left_join(cire_df, cire_tb, by=c("dep", "date"))
cire_df <- cire_df %>%
mutate(PCRpositive_inflow = rowSums(cire_df[, c("PCRpositive_inflow.x", "PCRpositive_inflow.y")], na.rm=TRUE)) %>%
select(-PCRpositive_inflow.x, -PCRpositive_inflow.y)
cire_df <- cire_df %>%
group_by(dep) %>%
arrange(date) %>%
mutate(PCRpositive_cumul = cumsum(PCRpositive_inflow)) %>%
arrange(dep)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.