## Load packages
library(devtools)
## Load dalmatian
devtools::load_all()
## Load negative binomial data
data(nbinom_data_1)
## Define mean and variance objects
mymean <- list(fixed = list(name = "alpha",
formula = ~x1,
priors = list(c("dnorm",0,.001))),
random = list(name = "epsilon",
formula = ~ID - 1),
link = "log")
mydisp <- list(fixed = list(name = "psi",
formula = ~x2,
priors = list(c("dnorm",0,.001))),
random = list(name = "xi",
formula = ~ID - 1),
link = "log")
## Set working directory
workingDir <- tempdir()
## Define list of arguments for jags.model()
jm.args <- list(file=file.path(workingDir,"nbinom_test_1.R"),n.chains = 3, n.adapt = 1000)
## Define list of arguments for coda.samples()
cs.args <- list(n.iter=5000,thin=20)
## Run the model using dalmatian
nbmcmc <- dalmatian(df=nbinom_data_1,
family = "nbinom",
mean.model=mymean,
dispersion.model=mydisp,
jags.model.args=jm.args,
coda.samples.args=cs.args,
response = "y",
residuals = FALSE,
run.model = TRUE,
engine = "JAGS",
n.cores = 3,
overwrite = TRUE,
saveJAGSinput = workingDir)
## For use on remote server
## save(nbmcmc,"nbmcmc.RData")
## For use on local machine within packge
save(nbmcmc,
file = file.path(proj_path(),"data-mcmc","nbmcmc.RData"))
## Post-processing
nbconvergence <- convergence(nbmcmc)
nbtraceplots <- traceplots(nbmcmc, show = FALSE)
nbsummary <- summary(nbmcmc)
nbcaterpillar <- caterpillar(nbmcmc, show = FALSE)
save(nbconvergence,
nbtraceplots,
nbsummary,
nbcaterpillar,
file = file.path(proj_path(),"inst","nbresults.RData"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.