#' IShares_IT class constructor
#'
#' the \code{IShares_IT} class is a subclass of the \code{IShares} class and represents
#' the ETF data from the Italian Ishares website. It overrided some methods for
#' taking into consideration Italian formatting specificity
#'
#' @param get_constituents \code{TRUE} for downloading ETF constituents, \code{FALSE}
#' otherwise
#' @param download_constituents_csv \code{TRUE} for saving the csv constituents files
#' from the ETF web site, \code{FALSE} otherwise
#' @param melted_constituents_list constituents data in melted format
#' @param constituents_list constituents data in parsed format
#' @param tickers_to_keep character vector containing the tickers to keep. One might
#' want to keep just a subset of tickers due to storage constraints
#' @param ... subclass additional attributes
#' @param class subclass names
#' @inheritParams IShares
#'
#' @return a new \code{IShares_IT} object
IShares_IT <- function(summary_link,
get_constituents = FALSE,
download_constituents_csv = FALSE,
melted_constituents_list = list(),
constituents_list = list(),
tickers_to_keep = character(),
...,
class = character()) {
## -------------------------------------------------------------------------
# 1) CALL SUPERCONSTRUCTOR
## -------------------------------------------------------------------------
obj <- new_IShares(
summary_link = summary_link,
melted_constituents_list = melted_constituents_list,
constituents_list = constituents_list,
region = "IT",
tickers_to_keep = tickers_to_keep,
...,
class = c(class, "IShares_IT")
)
## -------------------------------------------------------------------------
# 2) PARSE CHARACTER SUMMMARY DATA
## -------------------------------------------------------------------------
obj$summary_data <- parse_summary_data_IT(get_summary_data(obj))
## -------------------------------------------------------------------------
# 3) GET ETF CONSTITUENTS
## -------------------------------------------------------------------------
if (get_constituents) {
obj$melted_constituents_list <- download_etf_constituents(
summary_data = get_summary_data(obj),
url_fixed_number = get_url_fixed_number(obj),
download_csv = download_constituents_csv,
region = get_region(obj)
)
template_classification <- classify_constituent_data(
melted_constituents_list = obj$melted_constituents_list,
region = "IT",
n_template = 1
)
obj$constituents_list <- parse_etf_constituents(
melted_constituents_list = obj$melted_constituents_list,
template_classification = template_classification
)
}
return(obj)
} # IShares_IT
parse_summary_data_IT <- function(summary_data) {
futile.logger::flog.info("parsing IT summary data from char")
assertthat::assert_that(is.data.frame(summary_data))
summary_data %>%
purrr::modify_if(is.character, readr::parse_guess, locale = readr::locale(decimal_mark = ",",
grouping_mark = ".",
date_format = "%d/%m/%Y")) %>%
purrr::modify_at(dplyr::vars(dplyr::contains("AsOf")), parse_date_col_IT) %>%
purrr::modify_at("inceptionDate", parse_date_col_IT)
} # parse_summary_data_IT
parse_date_col_IT <- function(vec) {
if (all(is.character(vec))) {
vec %>% readr::parse_date(format = "%d %b %Y", locale = readr::locale("it"))
} else {
vec
}
} # parse_date_col_IT
get_url_fixed_number <- function(obj) {
UseMethod("get_url_fixed_number")
} # get_url_fixed_number
get_url_fixed_number.IShares_IT <- function(obj) {
as.character("1506575546154")
} # get_url_fixed_number.IShares_IT
#' @export
is_template_1_IT <- function(melted_data) {
if (is.null(melted_data)) return(FALSE)
assertthat::assert_that(is.data.frame(melted_data))
cell_11 <- melted_data %>% dplyr::filter(row == 1, col == 1) %>% dplyr::pull(value)
if (cell_11 == "Al") {
TRUE
} else {
FALSE
}
} # is_template_1_IT
#' @export
parse_template_1_IT <- function(melted_data) {
assertthat::assert_that(is.data.frame(melted_data))
## -------------------------------------------------------------------------
# 1) EXTRACT AOD
## -------------------------------------------------------------------------
aod <- melted_data %>%
dplyr::filter(row == 1, col == 2) %>%
dplyr::pull(value) %>%
as.Date(format = "%d/%m/%Y")
## -------------------------------------------------------------------------
# 2) COL NAMES
## -------------------------------------------------------------------------
col_names <- melted_data %>%
dplyr::filter(row == 3) %>%
dplyr::select(col, col_name = value) %>%
dplyr::distinct(col_name, .keep_all = TRUE)
## -------------------------------------------------------------------------
# 3) WIDEN THE DATA
## -------------------------------------------------------------------------
# there coulb be whote spaces in the value column of the `melted_data` dataframe.
# Apparently single empty white spaces are not remove by setting `trim_ws = TRUE`
# in readr::melt_csv. The parameter `skip_empty_rows` is set to FALSE for being able
# to use the same numbering of the csv files.
melted_data %>%
dplyr::filter(row > 3) %>%
dplyr::filter(!stringr::str_detect(value, pattern = "^\\s+$")) %>% # remove whitespaces
dplyr::left_join(col_names, by = "col") %>%
tidyr::pivot_wider(
id_cols = row,
names_from = col_name,
values_from = value
) %>%
dplyr::select(-row) %>%
dplyr::filter_all(dplyr::any_vars(!is.na(.))) %>%
dplyr::mutate(aod = aod, idx = 1:nrow(.)) %>%
dplyr::select(aod, idx, dplyr::everything()) %>%
purrr::modify_if(
is.character,
~ .x %>%
stringr::str_replace("%", "") %>% # remove it from the `Ponderazione` column
readr::parse_guess(locale = readr::locale(decimal_mark = ",",
grouping_mark = ".",
date_format = "%d/%m/%Y"))
)
} # parse_template_1_IT
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.