| regional_mix.simulate | R Documentation | 
Simulates a data set from a mixture-of-experts model for RCP (for region of common profile) types.
regional_mix.simulate(
  nRCP = 3,
  S = 20,
  n = 200,
  p.x = 3,
  p.w = 0,
  alpha = NULL,
  tau = NULL,
  beta = NULL,
  gamma = NULL,
  logDisps = NULL,
  powers = NULL,
  X = NULL,
  W = NULL,
  offset = NULL,
  family = "bernoulli"
)
nRCP | 
 Integer giving the number of RCPs  | 
S | 
 Integer giving the number of species  | 
n | 
 Integer giving the number of observations (sites)  | 
p.x | 
 Integer giving the number of covariates (including the intercept) for the model for the latent RCP types  | 
p.w | 
 Integer giving the number of covariates (excluding the intercept) for the model for the species data  | 
alpha | 
 Numeric vector of length S. Specifies the mean prevalence for each species, on the logit scale  | 
tau | 
 Numeric matrix of dimension c(nRCP-1,S). Specifies each species difference from the mean to each RCPs mean for the first nRCP-1 RCPs. The last RCP means are calculated using the sum-to-zero constraints  | 
beta | 
 Numeric matrix of dimension c(nRCP-1,p.x). Specifies the RCP's dependence on the covariates (in X)  | 
gamma | 
 Numeric matrix of dimension c(n,p.w). Specifies the species' dependence on the covariates (in W)  | 
logDisps | 
 Logartihm of the (over-)dispersion parameters for each species for negative binomial, Tweedie and Normal models  | 
powers | 
 Power parameters for each species for Tweedie model  | 
X | 
 Numeric matrix of dimension c(n,p.x). Specifies the covariates for the RCP model. Must include the intercept, if one is wanted. Default is random numbers in a matrix of the right size.  | 
W | 
 Numeric matrix of dimension c(n,p.w). Specifies the covariates for the species model. Must not include the intercept. Unless you want it included twice. Default is to give random levels of a two-level factor.  | 
offset | 
 Numeric vector of size n. Specifies any offset to be included into the species level model.  | 
family | 
 Text string. Specifies the family of the species data. Current options are "bernoulli" (default), "poisson", "negative.binomial", "tweedie" and "gaussian.  | 
## Not run: 
#generates synthetic data
set.seed( 151)
n <- 100
S <- 10
nRCP <- 3
my.dist <- "negative.binomial"
X <- as.data.frame( cbind( x1=runif( n, min=-10, max=10),
                          x2=runif( n, min=-10, max=10)))
Offy <- log( runif( n, min=30, max=60))
pols <- list()
pols[[1]] <- poly( X$x1, degree=3)
pols[[2]] <- poly( X$x2, degree=3)
X <- as.matrix( cbind( 1, X, pols[[1]], pols[[2]]))
colnames( X) <- c("const", 'x1', 'x2', paste( "x1",1:3,sep='.'),
paste( "x2",1:3,sep='.'))
p.x <- ncol( X[,-(2:3)])
p.w <- 3
W <- matrix(sample( c(0,1), size=(n*p.w), replace=TRUE), nrow=n, ncol=p.w)
colnames( W) <- paste( "w",1:3,sep=".")
alpha <- rnorm( S)
tau.var <- 0.5
b <- sqrt( tau.var/2)
tau <- matrix( rexp( n=(nRCP-1)*S,rate=1/b) - rexp( n=(nRCP-1)*S, rate=1/b),
 nrow=nRCP-1, ncol=S)
beta <- 0.2 * matrix( c(-1.2, -2.6, 0.2, -23.4, -16.7, -18.7, -59.2,
 -76.0,-14.2, -28.3, -36.8, -17.8, -92.9,-2.7), nrow=nRCP-1, ncol=p.x)
gamma <- matrix( rnorm( S*p.w), ncol=p.w, nrow=S)
logDisp <- log( rexp( S, 1))
set.seed(121)
simDat <- regional_mix.simulate( nRCP=nRCP, S=S, p.x=p.x, p.w=p.w, n=n,
alpha=alpha, tau=tau, beta=beta, gamma=gamma, X=X[,-(2:3)], W=W,
family=my.dist, logDisp=logDisp, offset=Offy)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.