Description Details Author(s) References Examples
Provides the estimation algorithm to perform the demand estimation described in Berry, Levinsohn and Pakes (1995) <DOI:10.2307/2171802>. The routine uses analytic gradients and offers a large number of implemented integration methods and optimization routines.
| Package: | BLPestimatoR | 
| Type: | Package | 
| Version: | 0.1.5 | 
| Date: | 2017-08-12 | 
| License: | GPL-3 | 
Daniel Brunner (HHU of Duesseldorf / Germany)
Constantin Weiser (HHU of Duesseldorf / Germany)
Andre Romahn (HHU of Duesseldorf / Germany)
Maintainer: Daniel Brunner <daniel.brunner@hhu.de>
Steven Berry, James Levinsohn, Ariel Pakes (1995): Automobile Prices in Market Equilibrium <DOI:10.2307/2171802>
Christopher R. Knittel, Konstantinos Metaxoglou (2014): Estimation of Random-Coefficient Demand Models: Two Empiricists Perspective <DOI:10.1162/REST_a_00394>
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | # Parameters
 i<-1
 K<-2
 Xlin_example <-  c("price", "x1", "x2", "x3", "x4", "x5")
 Xexo_example <- c("x1", "x2", "x3", "x4", "x5")
 Xrandom_example <- paste0("x",1:K)
 instruments_example <- paste0("iv",1:10)
 # Data generation
 BLP_data <- get.BLP.dataset(nmkt = 25, nbrn = 20,
                             Xlin = Xlin_example,
                             Xexo = Xexo_example,
                             Xrandom = Xrandom_example,
                             instruments = instruments_example,
                             true.parameters = list(Xlin.true.except.price = rep(0.2,5),
                                                    Xlin.true.price = -0.2, Xrandom.true = rep(2,K),
                                                    instrument.effects = rep(2,10),
                                                    instrument.Xexo.effects = rep(1,5)),
                             price.endogeneity = list( mean.xi = -2,
                                                       mean.eita = 0,
                                                       cov = cbind( c(1,0.7), c(0.7,1))),
                             printlevel = 0, seed = 5326 )
 # Estimation
 BLP_est<- estimateBLP(Xlin = Xlin_example,
                       Xrandom = Xrandom_example,
                       Xexo =  Xexo_example,
                       instruments = instruments_example,
                       shares = "shares",
                       cdid = "cdid",
                       productData = BLP_data,
                       starting.guesses.theta2 = rep(1,K),
                       solver.control = list(maxeval = 5000),
                       solver.method = "BFGS_matlab",
                       starting.guesses.delta =  rep(1, length(BLP_data$cdid)),
                       blp.control = list(inner.tol = 1e-6,
                                          inner.maxit = 5000),
                       integration.control= list(  method="MLHS",
                                                   amountNodes= 100,
                                                   seed= 3   ),
                       postEstimation.control= list(standardError = "robust",
                                                    extremumCheck = TRUE,
                                                    elasticities = "price"),
                       printLevel = 2)
 # Show results
 summary(BLP_est)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.