####################################
## Alvarez et al. data
####################################
library("pcse")
set.seed(1999)
data("agl")
model = "within"
index = c('country', 'year')
model = 'within'
effect = 'time'
data = agl
#########################
## HMBB estimation
#########################
## Be aware that 100 runs are too short for analysis.
mcmc = 100; burn = 100; verbose = 100; thin = 1;
formula <- growth ~ lagg1 + opengdp + openex + openimp + leftc + central + inter
agl.cp0 <- BridgeRandomPanel(formula=formula, data = data, index = index,
mcmc=mcmc, , verbose=verbose, Waic = TRUE,
n.break = 0)
agl.cp1 <- BridgeRandomPanel(formula=formula, data = data, index = index,
mcmc=mcmc, , verbose=verbose, Waic = TRUE,
n.break = 1)
agl.cp2 <- BridgeRandomPanel(formula=formula, data = data, index = index,
mcmc=mcmc, , verbose=verbose, Waic = TRUE,
n.break = 2)
## model selection by WAIC
waic <- WaicCompare(list(agl.cp0, agl.cp1, agl.cp2), print = TRUE)
plotWaic(waic)
par(mfrow=c(1, 2))
MCMCpack::plotState(agl.cp1, start=1970, legend.control =c(1970, 0.85), main="One break")
MCMCpack::plotState(agl.cp2, start=1970, legend.control =c(1970, 0.85), main="Two breaks")
####################################
## dotplot over time
## time-varying movements of selected covariates
####################################
## all covariates
dotplotRegime(agl.cp1, hybrid=FALSE, start = 1970, location.bar=12, x.location="default",
text.cex=0.8, main="Time-varying Movements of All Covariates")
## label as a legend
dotplotRegime(agl.cp1, hybrid=FALSE, start = 1970, location.bar=12, x.location="legend",
text.cex=0.8, main="Time-varying Movements of All Covariates")
## leftc only
## select works like grep()
dotplotRegime(agl.cp1, hybrid=FALSE, start = 1970, location.bar=12, x.location="static",
text.cex=0.8, select="left", main=("Time-varying Movements of Left Party"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.