model {
# Define likelihood model for data:
for (p in 1:N_patients)
{
for(a in 1:antibiotic_classes)
{
response[h_GUID[p],a] ~ dbern(aag.prob[a,
sample_month[h_sample_GUID[p]],
h_sample_GUID[p]])
}
}
for (gp in 1:N_gp)
{
for(a in 1:antibiotic_classes)
{
response[gp_GUID[gp],a] ~ dbern(aag.prob[a,
sample_month[gp_sample_GUID[gp]],
gp_sample_GUID[gp]])
}
}
for (v in 1:N_volunteers)
{
for(a in 1:antibiotic_classes)
{
response[v_GUID[v],a] ~ dbern(aag.prob[a,
sample_month[v_sample_GUID[v]],
v_sample_GUID[v]])
}
}
for (o in 1:N_outpatients)
{
for(a in 1:antibiotic_classes)
{
response[o_GUID[o],a] ~ dbern(aag.prob[a,
sample_month[o_sample_GUID[o]],
o_sample_GUID[o]])
}
}
# ------------------------
# Define the priors:
for(a in 1:antibiotic_classes)
{
antibiotic.class.effect[a] ~ dnorm(intercept, tau.class)
logit(a.prob[a]) <- antibiotic.class.effect[a]
}
for(m in 1:N_sample_month)
{
samplemonth.effect[m] ~ dnorm(0, tau.samplemonth)
}
age.effect ~ dnorm(0, 0.001)
age2.effect ~ dnorm(0, 0.001)
for (s in 1:N_sample)
{
mu.age[s] <- age.effect * age[s] + age2.effect * pow(age[s], 2)
}
for(a in 1:antibiotic_classes)
{
for(m in 1:N_sample_month)
{
for (s in 1:N_sample)
{
logit(aag.prob[a,m,s]) <- antibiotic.class.effect[a] +
samplemonth.effect[m] + mu.age[s]
}
}
}
# Prior value for intercept (log-odds of the average resistance in all samples)
intercept ~ dnorm(0, 0.001)
# Prior values for precision
tau.class ~ dgamma(0.001, 0.001)
tau.samplemonth ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.class <- sqrt(1/tau.class)
sd.samplemonth <- sqrt(1/tau.samplemonth)
#monitor# full.pd, dic, deviance, a.prob, intercept, sd.class, sd.samplemonth
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.