model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability wc.prob (gp.prob, v.prob,
# and o.prob)
for (p in 1:N_patients)
{
h_resist[p] ~ dbern(gage2.prob[gender[h_sample_GUID[p]],
h_sample_GUID[p]])
}
for (gp in 1:N_gp)
{
gp_resist[gp] ~ dbern(gage2.prob[gender[gp_sample_GUID[gp]],
gp_sample_GUID[gp]])
}
for (v in 1:N_volunteers)
{
v_resist[v] ~ dbern(gage2.prob[gender[v_sample_GUID[v]],
v_sample_GUID[v]])
}
for (o in 1:N_outpatients)
{
o_resist[o] ~ dbern(gage2.prob[gender[o_sample_GUID[o]],
o_sample_GUID[o]])
}
# ------------------------
# # Define the priors:
# age.effect ~ dnorm(0, 0.001)
# age.sq.effect ~ dnorm(0, 0.001)
for (g in genders)
{
age.effect[g] ~ dnorm(0, 0.001)
age.sq.effect[g] ~ dnorm(0, 0.001)
# g.age.effect[g] ~ dnorm(age.effect, 0.001)
# g.age.sq.effect[g] ~ dnorm(age.sq.effect, 0.001)
for (s in 1:N_sample)
{
gage2.effect[g,s] <- intercept + age.effect[g] * age[s] +
age.sq.effect[g] * pow(age[s], 2)
logit(gage2.prob[g,s]) <- gage2.effect[g,s]
}
}
# ------------------------
# Prior value for intercept
intercept ~ dnorm(0, 0.001)
#monitor# full.pd, dic, deviance, gender.effect, age.effect, intercept, age.sq.effect
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.