model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability g.prob
for (p in 1:N_patients)
{
h_resist[p] ~ dbern(g.prob[gender[h_sample_GUID[p]]])
}
for (gp in 1:N_gp)
{
gp_resist[gp] ~ dbern(g.prob[gender[gp_sample_GUID[gp]]])
}
for (v in 1:N_volunteers)
{
v_resist[v] ~ dbern(g.prob[gender[v_sample_GUID[v]]])
}
for (o in 1:N_outpatients)
{
o_resist[o] ~ dbern(g.prob[gender[o_sample_GUID[o]]])
}
# ------------------------
# Define the priors:
# Prior distribution for gender.effect (log-odds for each gender). Sample
# different gender.effect from normal distribution for each gender and
# convert to a probability). Since there is only one explanatory variable,
# with only two elements, set intercept as 0, because if you have more
# degrees of freedom than levels in the variable, then the caterpillar might
# have drifting issues.
for (g in genders)
{
gender.effect[g] ~ dnorm(0, tau)
logit(g.prob[g]) <- gender.effect[g]
}
# ------------------------
# Prior values for precision
tau ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd <- sqrt(1/tau)
# Calculate odds
g.diff <- gender.effect[male] - gender.effect[female]
odds.g <- exp(g.diff)
#monitor# full.pd, dic, deviance, gender.effect, g.prob, g.diff, odds.g, sd
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.