model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability h.prob (or nh.prob)
for (p in 1:N_patients)
{
h_resist[p] ~ dbern(h.prob[hospital[ward[h_sample_GUID[p]]]])
# For WAIC computation
# h_like[p] <- logdensity.bin(h_resist[p],
# h.prob[hospital[ward[h_sample_GUID[p]]]], 1)
}
for (gp in 1:N_gp)
{
gp_resist[gp] ~ dbern(nh.prob)
# For WAIC computation
# gp_like[gp] <- logdensity.bin(gp_resist[gp], nh.prob, 1)
}
for (v in 1:N_volunteers)
{
v_resist[v] ~ dbern(nh.prob)
# For WAIC computation
# v_like[v] <- logdensity.bin(v_resist[v], nh.prob, 1)
}
for (o in 1:N_outpatients)
{
o_resist[o] ~ dbern(nh.prob)
# For WAIC computation
# o_like[o] <- logdensity.bin(o_resist[o], nh.prob, 1)
}
# ------------------------
# Define the priors:
# Prior distribution for h.effect (log-odds for each hospital). Sample
# different h.effect from normal distribution for each hospital and
# convert to a probability). Since there is only one explanatory variable,
# put intercept here.
for (h in 1:N_hosp)
{
h.effect[h] ~ dnorm(intercept, tau)
logit(h.prob[h]) <- h.effect[h]
}
# nh is considered a hospital
nh.effect ~ dnorm(intercept, tau)
logit(nh.prob) <- nh.effect
# ------------------------
# Prior value for intercept (log-odds of the average resistance in all samples)
intercept ~ dnorm(0, 0.001)
# Prior values for precision
tau ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd <- sqrt(1/tau)
#monitor# full.pd, dic, deviance, intercept, h.prob, nh.prob, sd
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.