model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability wt.prob (gp.prob, v.prob,
# and o.prob)
for (p in 1:N_patients)
{
h_resist[p] ~ dbern(wt.prob[ward_type[ward[h_sample_GUID[p]]]])
}
for (gp in 1:N_gp)
{
gp_resist[gp] ~ dbern(gp.prob)
}
for (v in 1:N_volunteers)
{
v_resist[v] ~ dbern(v.prob)
}
for (o in 1:N_outpatients)
{
o_resist[o] ~ dbern(o.prob)
}
# ------------------------
# Define the priors:
# Prior distribution for wt.effect (log-odds for each ward type). Sample
# different wt.effect from normal distribution for each ward type and
# convert to a probability). Since there is only one response variable, put
# intercept here.
for (wt in hosp_wardtypes)
{
wt.effect[wt] ~ dnorm(intercept, tau.wt)
logit(wt.prob[wt]) <- wt.effect[wt]
}
gp.effect ~ dnorm(intercept, tau.wt) # equivalent to wt.effect
logit(gp.prob) <- gp.effect
v.effect ~ dnorm(intercept, tau.wt) # equivalent to wt.effect
logit(v.prob) <- v.effect
o.effect ~ dnorm(intercept, tau.wt) # equivalent to wt.effect
logit(o.prob) <- o.effect
# ------------------------
# Prior value for intercept
intercept ~ dnorm(0, 0.001)
# Prior values for precision
tau.wt ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.wt <- sqrt(1/tau.wt)
#monitor# full.pd, dic, deviance, gp.prob, v.prob, o.prob, intercept, sd.wt
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.