model {
# Define likelihood model for data:
# Carbapenem resistance in hospital (gp, volunteer, and outpatient) samples
# is Bernoulli distributed with probability ward.prob (gp.prob, v.prob,
# and o.prob)
for (p in 1:N_patients)
{
h_resist[p] ~ dbern(ward.prob[ward[h_sample_GUID[p]]])
}
for (gp in 1:N_gp)
{
gp_resist[gp] ~ dbern(gp.prob)
}
for (v in 1:N_volunteers)
{
v_resist[v] ~ dbern(v.prob)
}
for (o in 1:N_outpatients)
{
o_resist[o] ~ dbern(o.prob)
}
# ------------------------
# Prior distribution for wt.effect (log-odds for each ward type). Sample
# different wt.effect from normal distribution for each ward type and
# convert to a probability). Assuming the presence of resistance in a
# hospital ward is based on ward type there, put intercept here.
for (wt in hosp_wardtypes)
{
wt.effect[wt] ~ dnorm(intercept, tau.wt)
}
# equivalent to wt.effect
nh.effect ~ dnorm(intercept, tau.wt)
logit(nh.prob) <- nh.effect
# Prior distribution for wtw.effect (log-odds for each hospital ward). Sample
# different wtw.effect from normal distribution for each hospital ward and
# convert to a probability).
for (w in hosp_wards)
{
wtw.effect[w] ~ dnorm(wt.effect[ward_type[w]], tau.ward)
logit(ward.prob[w]) <- wtw.effect[w]
}
# equivalent to wtw.effect
gp.effect ~ dnorm(nh.effect, tau.ward)
v.effect ~ dnorm(nh.effect, tau.ward)
o.effect ~ dnorm(nh.effect, tau.ward)
# convert to probability
logit(gp.prob) <- gp.effect
logit(v.prob) <- v.effect
logit(o.prob) <- o.effect
# ------------------------
# Prior value for intercept
intercept ~ dnorm(0, 0.001)
# Prior values for precision
tau.wt ~ dgamma(0.001, 0.001)
tau.ward ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.wt <- sqrt(1/tau.wt)
sd.ward <- sqrt(1/tau.ward)
#monitor# full.pd, dic, deviance, intercept, nh.prob, sd.wt, sd.ward
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.