#' Return rows with matching conditions
#'
#' Filter finds rows where conditions are true.
#' @param df A dataframe
#' @param user Name of column that holds unique identifier for each user
#' @param ... Logical predicates defined in terms of the variables in df. Only rows match conditions are kept.
#'
#' @importFrom emo ji
#' @importFrom rlang sym
#' @importFrom rlang has_name
#'
#' @export
filter_verbose <- function(df, user = "u_id", ...){
if (!rlang::has_name(df, user)) {
stop(paste(emo::ji("bomb"), "User column does not exist!"))
}
user <- rlang::sym(user)
var_expr <- enquos(...)
n_original_users <- df %>% pull({{user}}) %>% dplyr::n_distinct()
message(paste(emo::ji("bust_in_silhouette"), "There are", n_original_users, "users at this moment."))
message(paste(emo::ji("hammer_and_wrench"), "Start filtering users..."))
start.time <- Sys.time()
output <- df %>% filter(!!!var_expr)
end.time <- Sys.time()
time.taken <- difftime(end.time, start.time, units = "secs") %>% round(., 3)
n_new_users <- output %>% pull({{user}}) %>% n_distinct()
n_removed_users <- n_original_users - n_new_users
message(paste(emo::ji("white_check_mark"), "Finish filtering! Filterred", n_removed_users, "users!"))
message(paste(emo::ji("bust_in_silhouette"), "There are", n_new_users, "users left."))
if(time.taken > 60){
time.taken <- round(time.taken/60, 2)
message(paste(emo::ji("hourglass"), "Filtering time:", time.taken, "mins"))
}else{
message(paste(emo::ji("hourglass"), "Filtering time:", time.taken, "secs"))
}
message("\n")
return(output)
}
#' Return rows with matching condition within nested dataframe
#'
#'
#' Filter finds rows where conditions are true within nested dataframe
#' @param df A nested dataframe
#' @param user Name of column that holds unique identifier for each user
#' @param ... Logical predicates defined in terms of the variables in df. Only rows match conditions are kept.
#'
#' @importFrom emo ji
#' @importFrom rlang sym
#' @importFrom rlang has_name
#' @importFrom dplyr n_distinct
#' @importFrom dplyr progress_estimated
#' @importFrom plyr empty
#' @importFrom purrr map
#' @importFrom purrr map_lgl
#'
#' @export
filter_nested <- function(df, user = "u_id", ...){
if(!is.list(df[ , grepl("^data$", names(df))])){
stop(paste(emo::ji("bomb"), "Dataset is not nested!"))
}
if (!rlang::has_name(df, user)) {
stop(paste(emo::ji("bomb"), "User column does not exist!"))
}
var_expr <- enquos(...)
user <- rlang::sym(user)
colname_nested_data <- names(df[ , grepl("^data$", names(df))])
#filter
filter_with_progress <- function(data){
pb$tick()$print()
data %>%
filter(!!!var_expr)
}
start.time <- Sys.time()
n_original_users <- df %>% pull({{user}}) %>% dplyr::n_distinct()
message(paste(emo::ji("bust_in_silhouette"), "There are", n_original_users, "users at this moment."))
message(paste(emo::ji("hammer_and_wrench"), "Start filtering user..."))
# create the progress bar
pb <- dplyr::progress_estimated(nrow(df))
start.time <- Sys.time()
output <- df %>%
dplyr::mutate({{colname_nested_data}} := purrr::map(df[[colname_nested_data]], ~filter_with_progress(.)))
output_data <- output[[colname_nested_data]]
#check empty tibble
output <- output %>%
filter(!(purrr::map_lgl(output_data, plyr::empty)))
end.time <- Sys.time()
time.taken <- difftime(end.time, start.time, units = "secs") %>% round(., 3)
n_new_users <- output %>% pull({{user}}) %>% dplyr::n_distinct()
n_removed_users <- n_original_users - n_new_users
message("\n")
message(paste(emo::ji("white_check_mark"), "Finish Filtering! Filterred", n_removed_users, "users!"))
message(paste(emo::ji("bust_in_silhouette"), "There are", n_new_users, "users left!"))
if(time.taken > 60){
time.taken <- round(time.taken/60, 2)
message(paste(emo::ji("hourglass"), "Filtering time:", time.taken, "mins"))
}else{
message(paste(emo::ji("hourglass"), "Filtering time:", time.taken, "secs"))
}
message("\n")
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.