#
# blur.R
#
# apply Gaussian blur to an image
#
# $Revision: 1.25 $ $Date: 2020/11/30 07:16:06 $
#
Smooth.im <- function(X, sigma=NULL, ..., kernel="gaussian",
normalise=FALSE, bleed=TRUE, varcov=NULL) {
blur(X, sigma=sigma, ..., kernel=kernel,
normalise=normalise, bleed=bleed, varcov=varcov)
}
blur <- function(x, sigma=NULL, ..., kernel="gaussian",
normalise=FALSE, bleed=TRUE, varcov=NULL) {
stopifnot(is.im(x))
# determine smoothing kernel
sigma.given <- !is.null(sigma)
varcov.given <- !is.null(varcov)
if (sigma.given) {
stopifnot(is.numeric(sigma))
stopifnot(length(sigma) %in% c(1, 2))
stopifnot(all(sigma > 0))
}
if (varcov.given)
stopifnot(is.matrix(varcov) && nrow(varcov) == 2 && ncol(varcov) == 2)
ngiven <- varcov.given + sigma.given
switch(ngiven + 1L,
{
sigma <- (1/8) * min(diff(x$xrange), diff(x$yrange))
}, {
if (sigma.given && length(sigma) == 2)
varcov <- diag(sigma^2)
if (!is.null(varcov))
sigma <- NULL
}, {
stop(paste("Give only one of the arguments", sQuote("sigma"),
"and", sQuote("varcov")))
})
# replace NA's in image raster by zeroes
X <- fillNA(x, 0)
# convolve with Gaussian
Y <- second.moment.calc(X, sigma=sigma, ..., kernel=kernel,
varcov=varcov, what="smooth")
# if no bleeding, we restrict data to the original boundary
if(!bleed)
Y$v[is.na(x$v)] <- NA
#
if(!normalise)
return(Y)
# normalisation:
# convert original image to window (0/1 image)
Xone <- x
isna <- is.na(x$v)
Xone$v[isna] <- 0
Xone$v[!isna] <- 1
# convolve with Gaussian
Ydenom <- second.moment.calc(Xone, sigma=sigma, ..., kernel=kernel,
varcov=varcov, what="smooth")
# normalise
Z <- eval.im(Y/Ydenom)
return(Z)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.