#'
#' quantiledensity.R
#'
#' quantile method for class 'density'
#'
#' Also a CDF from a 'density'
#'
#' $Revision: 1.3 $ $Date: 2015/09/01 11:53:15 $
quantile.density <- local({
quantile.density <- function(x, probs = seq(0, 1, 0.25), names = TRUE, ...,
warn=TRUE) {
stopifnot(inherits(x, "density"))
#' check whether density estimate was restricted to an interval
if(warn && is.call(cl <- x$call) && any(c("from", "to") %in% names(cl)))
warning(paste("Density was normalised within the computed range",
"of x values", prange(c(cl$from, cl$to))),
call.=FALSE)
#' validate probs
eps <- 100 * .Machine$double.eps
if(any((p.ok <- !is.na(probs)) & (probs < -eps | probs > 1 + eps)))
stop("'probs' outside [0,1]")
if (na.p <- any(!p.ok)) {
o.pr <- probs
probs <- probs[p.ok]
probs <- pmax(0, pmin(1, probs))
}
np <- length(probs)
qs <- rep(NA_real_, np)
if (np > 0) {
#' extract density values
xx <- x$x
yy <- x$y
nn <- length(xx)
#' integrate, normalise
Fx <- cumsum(yy * c(0, diff(xx)))
Fx <- Fx/Fx[nn]
#' quantile
for(j in 1:np) {
ii <- min(which(Fx >= probs[j]))
if(!is.na(ii) && ii >= 1 && ii <= nn)
qs[j] <- xx[ii]
}
if (names && np > 0L) {
names(qs) <- format_perc(probs)
}
}
if (na.p) {
o.pr[p.ok] <- qs
names(o.pr) <- rep("", length(o.pr))
names(o.pr)[p.ok] <- names(qs)
return(o.pr)
} else return(qs)
}
format_perc <- function (x, digits = max(2L, getOption("digits")),
probability = TRUE, use.fC = length(x) < 100, ...) {
if (length(x)) {
if (probability) x <- 100 * x
paste0(if (use.fC)
formatC(x, format = "fg", width = 1, digits = digits)
else format(x, trim = TRUE, digits = digits, ...), "%")
}
else character(0)
}
quantile.density
})
CDF <- function(f, ...) {
UseMethod("CDF")
}
CDF.density <- function(f, ..., warn=TRUE) {
stopifnot(inherits(f, "density"))
#' check whether density estimate was restricted to an interval
if(warn && is.call(cl <- f$call) && any(c("from", "to") %in% names(cl)))
warning(paste("Density was normalised within the computed range",
"of x values", prange(c(cl$from, cl$to))),
call.=FALSE)
#' integrate
xx <- f$x
yy <- f$y
nn <- length(xx)
Fx <- cumsum(yy * c(0, diff(xx)))
#' normalise
Fx <- Fx/Fx[nn]
#'
FF <- approxfun(xx, Fx, method="linear", rule=2)
return(FF)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.