#' Format latitude labels
#'
#' @param x Latitude numeric value.
#'
#' @return String with latitude and corresponding direction suffix.
#' @keywords internal
#' @noRd
#'
#' @examples
#' codos:::lat_lab(-30)
#' codos:::lat_lab(30)
lat_lab <- function(x) {
ifelse(x < 0,
paste(x, "\u00B0S"),
ifelse(x > 0,
paste(x, "\u00B0N"),
x))
}
#' Format longitude labels
#'
#' @param x Longitude numeric value.
#'
#' @return String with longitude and corresponding direction suffix.
#' @keywords internal
#' @noRd
#'
#' @examples
#' codos:::lon_lab(-30)
#' codos:::lon_lab(30)
lon_lab <- function(x) {
ifelse(x < 0,
paste(x, "\u00B0E"),
ifelse(x > 0,
paste(x, "\u00B0W"),
x))
}
#' Compare time series
#'
#' Compare time series for climatologies (monthly) and interpolated (daily)
#' data.
#'
#' @param climatology Numeric vector with monthly climatologies data.
#' @param interpolated Numeric vector with daily interpolated data.
#' @param month_len Numeric vector with the number of days in each month.
#' @param vars Vector of strings with variables to be plotted.
#' @param main String with title for the plot.
#' @param xlab String with label for the x-axis.
#' @param ylab String with label for the y-axis.
#'
#' @return \code{ggplot2} graphic object.
#' @keywords internal
ts_comp <- function(climatology,
interpolated,
month_len,
vars = c("cld", "pre", "tmn", "tmx", "vap"),
main = NULL,
xlab = NULL,
ylab = NULL) {
# Local binding
variable <- x <- y <- NULL
days = sum(month_len)
months = length(month_len)
df <- data.frame(x = rep(seq_len(days), length(vars)),
y = interpolated,
variable = rep(vars, each = days))
df2 <- data.frame(x = cumsum(month_len) - month_len / 2,
y = climatology,
variable = rep(vars, each = months))
ggplot2::ggplot(df, ggplot2::aes(x, y)) +
ggplot2::geom_line(ggplot2::aes(color = variable, linetype = variable)) +
ggplot2::geom_point(ggplot2::aes(x, y, color = variable), df2) +
ggplot2::labs(title = main, x = xlab, y = ylab) +
ggplot2::scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
ggplot2::scale_color_brewer(palette = "Set1") +
ggplot2::theme_bw()
}
#' Plot time series
#'
#' Plot time series for multiple variables.
#'
#' @param data Numeric vector with the data.
#' @param vars Vector of strings with variables to be plotted.
#' @param count Numeric, number of observations of each variable.
#' @param x Numeric vector with breaks for the x-axis.
#' @param main String with title for the plot.
#' @param xlab String with label for the x-axis.
#' @param ylab String with label for the y-axis.
#'
#' @return \code{ggplot2} graphic object.
#' @keywords internal
ts_plot <- function(data,
vars = c("cld", "pre", "tmn", "tmx", "vap"),
count = length(data) / length(vars),
x = rep(seq_len(count), length(vars)),
main = NULL,
xlab = NULL,
ylab = NULL) {
# Local binding
variable <- y <- NULL
df <- data.frame(x = x,
y = data,
variable = rep(vars, each = count))
ggplot2::ggplot(df, ggplot2::aes(x, y)) +
ggplot2::geom_line(ggplot2::aes(color = variable, linetype = variable)) +
ggplot2::labs(title = main, x = xlab, y = ylab) +
ggplot2::scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
ggplot2::scale_color_brewer(palette = "Set1") +
ggplot2::theme_bw()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.