#' Tidy Randomly Generated Bernoulli Distribution Tibble
#'
#' @family Discrete Distribution
#' @family Bernoulli
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @seealso \url{https://en.wikipedia.org/wiki/Bernoulli_distribution}
#'
#' @details This function uses the `rbinom()`, and its underlying
#' `p`, `d`, and `q` functions. The _Bernoulli_ distribution is a special case
#' of the _Binomial_ distribution with `size = 1` hence this is why the `binom`
#' functions are used and set to size = 1.
#'
#' @description This function will generate `n` random points from a Bernoulli
#' distribution with a user provided, `.prob`, and number of random simulations
#' to be produced. The function returns a tibble with the simulation number
#' column the x column which corresponds to the n randomly generated points,
#' the `d_`, `p_` and `q_` data points as well.
#'
#' The data is returned un-grouped.
#'
#' The columns that are output are:
#'
#' - `sim_number` The current simulation number.
#' - `x` The current value of `n` for the current simulation.
#' - `y` The randomly generated data point.
#' - `dx` The `x` value from the [stats::density()] function.
#' - `dy` The `y` value from the [stats::density()] function.
#' - `p` The values from the resulting p_ function of the distribution family.
#' - `q` The values from the resulting q_ function of the distribution family.
#'
#' @param .n The number of randomly generated points you want.
#' @param .prob The probability of success/failure.
#' @param .num_sims The number of randomly generated simulations you want.
#' @param .return_tibble A logical value indicating whether to return the result
#' as a tibble. Default is TRUE.
#'
#' @examples
#' tidy_bernoulli()
#' @return
#' A tibble of randomly generated data.
#' @name tidy_bernoulli
NULL
#' @export
#' @rdname tidy_bernoulli
tidy_bernoulli <- function(.n = 50, .prob = 0.1, .num_sims = 1, .return_tibble = TRUE) {
# Arguments
n <- as.integer(.n)
num_sims <- as.integer(.num_sims)
pr <- as.numeric(.prob)
ret_tbl <- as.logical(.return_tibble)
# Checks ----
if (!is.integer(n) | n < 0) {
rlang::abort(
message = "The parameters '.n' must be of class integer. Please pass a whole
number like 50 or 100. It must be greater than 0.",
use_cli_format = TRUE
)
}
if (!is.integer(num_sims) | num_sims < 0) {
rlang::abort(
message = "The parameter `.num_sims' must be of class integer. Please pass a
whole number like 50 or 100. It must be greater than 0.",
use_cli_format = TRUE
)
}
if (pr < 0 | pr > 1) {
rlang::abort(
message = "The '.prob' parameter must have an argument between 0 and 1 inclusive",
use_cli_format = TRUE
)
}
# Create a data.table with one row per simulation
df <- data.table::CJ(sim_number = factor(1:num_sims), x = 1:n)
# Group the data by sim_number and add columns for x and y
df[, y := stats::rbinom(n = .N, size = 1, prob = pr)]
# Compute the density of the y values and add columns for dx and dy
df[, c("dx", "dy") := density(y, n = n)[c("x", "y")], by = sim_number]
# Compute the p-values for the y values and add a column for p
df[, p := stats::pbinom(y, size = 1, prob = pr)]
# Compute the q-values for the p-values and add a column for q
df[, q := stats::qbinom(p, size = 1, prob = pr)]
if(.return_tibble){
df <- dplyr::as_tibble(df)
} else {
data.table::setkey(df, NULL)
}
param_grid <- dplyr::tibble(.prob)
# Attach descriptive attributes to tibble
attr(df, "distribution_family_type") <- "discrete"
attr(df, ".prob") <- .prob
attr(df, ".n") <- .n
attr(df, ".num_sims") <- .num_sims
attr(df, ".ret_tbl") <- .return_tibble
attr(df, "tibble_type") <- "tidy_bernoulli"
attr(df, "param_grid") <- param_grid
attr(df, "param_grid_txt") <- paste0(
"c(",
paste(param_grid[, names(param_grid)], collapse = ", "),
")"
)
attr(df, "dist_with_params") <- paste0(
"Bernoulli",
" ",
paste0(
"c(",
paste(param_grid[, names(param_grid)], collapse = ", "),
")"
)
)
return(df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.