#' Auto Arima XGBoost Workflowset Function
#'
#' @family Auto Workflowsets
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @description
#' This function is used to quickly create a workflowsets object.
#'
#' @seealso \url{https://workflowsets.tidymodels.org/}
#' @seealso \url{https://business-science.github.io/modeltime/reference/arima_boost.html}
#'
#' @details This function expects to take in the recipes that you want to use in
#' the modeling process. This is an automated workflow process. There are sensible
#' defaults set for the model specification, but if you choose you can set them
#' yourself if you have a good understanding of what they should be. The mode is
#' set to "regression".
#'
#' This uses the option `set_engine("auto_arima_xgboost")` or `set_engine("arima_xgboost")`
#'
#' [modeltime::arima_boost()] arima_boost() is a way to generate a specification
#' of a time series model that uses boosting to improve modeling errors
#' (residuals) on Exogenous Regressors. It works with both "automated" ARIMA
#' (auto.arima) and standard ARIMA (arima). The main algorithms are:
#' - Auto ARIMA + XGBoost Errors (engine = auto_arima_xgboost, default)
#' - ARIMA + XGBoost Errors (engine = arima_xgboost)
#'
#' @param .model_type This is where you will set your engine. It uses
#' [modeltime::arima_boost()] under the hood and can take one of the following:
#' * "arima_xgboost"
#' * "auto_arima_xgboost
#' * "all_engines" - This will make a model spec for all available engines.
#' @param .recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)
#' @param .seasonal_period Set to 0,
#' @param .non_seasonal_ar Set to 0,
#' @param .non_seasonal_differences Set to 0,
#' @param .non_seasonal_ma Set to 0,
#' @param .seasonal_ar Set to 0,
#' @param .seasonal_differences Set to 0,
#' @param .seasonal_ma Set to 0,
#' @param .trees An integer for the number of trees contained in the ensemble.
#' @param .min_node An integer for the minimum number of data points in a node
#' that is required for the node to be split further.
#' @param .tree_depth An integer for the maximum depth of the tree
#' (i.e. number of splits) (specific engines only).
#' @param .learn_rate A number for the rate at which the boosting algorithm
#' adapts from iteration-to-iteration (specific engines only).
#' @param .stop_iter The number of iterations without improvement before
#' stopping (xgboost only).
#'
#' @examples
#' suppressPackageStartupMessages(library(modeltime))
#' suppressPackageStartupMessages(library(timetk))
#' suppressPackageStartupMessages(library(dplyr))
#' suppressPackageStartupMessages(library(rsample))
#'
#' data <- AirPassengers %>%
#' ts_to_tbl() %>%
#' select(-index)
#'
#' splits <- time_series_split(
#' data
#' , date_col
#' , assess = 12
#' , skip = 3
#' , cumulative = TRUE
#' )
#'
#' rec_objs <- ts_auto_recipe(
#' .data = training(splits)
#' , .date_col = date_col
#' , .pred_col = value
#' )
#'
#' wf_sets <- ts_wfs_arima_boost("all_engines", rec_objs)
#' wf_sets
#'
#' @return
#' Returns a workflowsets object.
#'
#' @name ts_wfs_arima_boost
NULL
#' @export
#' @rdname ts_wfs_arima_boost
ts_wfs_arima_boost <- function(.model_type = "all_engines", .recipe_list,
.trees = 10, .min_node = 2, .tree_depth = 6,
.learn_rate = 0.015,
.stop_iter = NULL, .seasonal_period = 0,
.non_seasonal_ar = 0,
.non_seasonal_differences = 0,
.non_seasonal_ma = 0,
.seasonal_ar = 0,
.seasonal_differences = 0,
.seasonal_ma = 0){
# * Tidyeval ---
model_type = .model_type
recipe_list = .recipe_list
seasonal_period = .seasonal_period
non_seasonal_ar = .non_seasonal_ar
non_seasonal_differences = .non_seasonal_differences
non_seasonal_ma = .non_seasonal_ma
seasonal_ar = .seasonal_ar
seasonal_differences = .seasonal_differences
seasonal_ma = .seasonal_ma
trees = .trees
min_n = .min_node
tree_depth = .tree_depth
learn_rate = .learn_rate
stop_iter = .stop_iter
# * Checks ----
if (!is.character(model_type)) {
stop(call. = FALSE, "(.model_type) must be set to a character string.")
}
if (!model_type %in% c("arima_xgboost","auto_arima_xgboost","all_engines")){
stop(call. = FALSE, "(.model_type) must be 'arima_xgboost','auto_arima_xgboost', or 'all_engines'.")
}
if (!is.list(recipe_list)){
stop(call. = FALSE, "(.recipe_list) must be a list of recipe objects")
}
# * Models ----
model_spec_arima_boost <- modeltime::arima_boost(
mode = "regression",
# ARIMA args
seasonal_period = seasonal_period,
non_seasonal_ar = non_seasonal_ar,
non_seasonal_differences = non_seasonal_differences,
non_seasonal_ma = non_seasonal_ma,
seasonal_ar = seasonal_ar,
seasonal_differences = seasonal_differences,
seasonal_ma = seasonal_ma,
# XGBoost Args
trees = trees,
min_n = min_n,
tree_depth = tree_depth,
learn_rate = learn_rate,
stop_iter = stop_iter
) %>%
parsnip::set_engine("arima_xgboost")
model_sepc_auto_arima_boost <- modeltime::arima_boost(
mode = "regression",
# XGBoost Args
trees = trees,
min_n = min_n,
tree_depth = tree_depth,
learn_rate = learn_rate,
stop_iter = stop_iter
) %>%
parsnip::set_engine("auto_arima_xgboost")
final_model_list <- if (model_type == "arima_xgboost"){
fml <- list(model_spec_arima_boost)
} else if (model_type == "auto_arima_xgboost"){
fml <- list(model_sepc_auto_arima_boost)
} else {
fml <- list(
model_spec_arima_boost,
model_sepc_auto_arima_boost
)
}
# * Workflow Sets ----
wf_sets <- workflowsets::workflow_set(
preproc = recipe_list,
models = final_model_list,
cross = TRUE
)
# * Return ---
return(wf_sets)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.