#' Auto Arima (Forecast auto_arima) Workflowset Function
#'
#' @family Auto Workflowsets
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @description
#' This function is used to quickly create a workflowsets object.
#'
#' @seealso \url{https://workflowsets.tidymodels.org/}
#' @seealso \url{https://business-science.github.io/modeltime/reference/arima_reg.html}
#'
#' @details This function expects to take in the recipes that you want to use in
#' the modeling process. This is an automated workflow process. There are sensible
#' defaults set for the model specification, but if you choose you can set them
#' yourself if you have a good understanding of what they should be. The mode is
#' set to "regression".
#'
#' This only uses the option `set_engine("auto_arima")` and therefore the .model_type
#' is not needed. The parameter is kept because it is possible in the future that
#' this could change, and it keeps with the framework of how other functions
#' are written.
#'
#' [modeltime::arima_reg()] arima_reg() is a way to generate a specification of
#' an ARIMA model before fitting and allows the model to be created using
#' different packages. Currently the only package is `forecast`.
#'
#' @param .model_type This is where you will set your engine. It uses
#' [modeltime::arima_reg()] under the hood and can take one of the following:
#' * "auto_arima"
#' @param .recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)
#'
#' @examples
#' suppressPackageStartupMessages(library(modeltime))
#' suppressPackageStartupMessages(library(timetk))
#' suppressPackageStartupMessages(library(dplyr))
#' suppressPackageStartupMessages(library(rsample))
#'
#' data <- AirPassengers %>%
#' ts_to_tbl() %>%
#' select(-index)
#'
#' splits <- time_series_split(
#' data
#' , date_col
#' , assess = 12
#' , skip = 3
#' , cumulative = TRUE
#' )
#'
#' rec_objs <- ts_auto_recipe(
#' .data = training(splits)
#' , .date_col = date_col
#' , .pred_col = value
#' )
#'
#' wf_sets <- ts_wfs_auto_arima("auto_arima", rec_objs)
#' wf_sets
#'
#' @return
#' Returns a workflowsets object.
#'
#' @name ts_wfs_auto_arima
NULL
#' @export
#' @rdname ts_wfs_auto_arima
ts_wfs_auto_arima <- function(.model_type = "auto_arima", .recipe_list){
# * Tidyeval ---
model_type = .model_type
recipe_list = .recipe_list
# * Checks ----
if (!is.character(model_type)) {
stop(call. = FALSE, "(.model_type) must be set to a character string.")
}
if (!model_type %in% c("auto_arima")){
stop(call. = FALSE, "(.model_type) must be 'auto_arima'.")
}
if (!is.list(recipe_list)){
stop(call. = FALSE, "(.recipe_list) must be a list of recipe objects")
}
# * Models ----
model_spec_auto_arima <- modeltime::arima_reg(
mode = "regression",
) %>%
parsnip::set_engine("auto_arima")
final_model_list <- list(
model_spec_auto_arima
)
# * Workflow Sets ----
wf_sets <- workflowsets::workflow_set(
preproc = recipe_list,
models = final_model_list,
cross = TRUE
)
# * Return ---
return(wf_sets)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.