library(tidyverse)
library(EBImage)
library(ShoeScrubR)
img_output_dir <- "~/Projects/CSAFE/2019-this_is_us/images/shoes/longitudinal/"
lss_dir <- "/lss/research/csafe-shoeprints/ShoeImagingPermanent"
# Setup and initial cleaning
orig_img <- EBImage::readImage(file.path(lss_dir, "040639L_20180307_5_1_1_boekhoff_pashek_jekruse.tif"))
img <- orig_img %>% channel("luminance")
pyr <- img_pyramid(img, scale = c(1, 3, 5, 7))
pyr$img[[4]]
pyr$data <- purrr::map(pyr$img, as.numeric)
pyr_df <- pyr %>%
select(scale, data) %>%
unnest(data)
ggplot(data = pyr_df, aes(x = data, color = factor(scale))) + geom_density()
filter_down <- function(img, scale = 3) {
offset <- floor(scale/2) + 1 # center of x and y when pulling tiles out
fimg <- filter2(img, matrix(1/scale^2, nrow = scale, ncol = scale))
coords <- expand.grid(seq(offset, dim(fimg)[1], by = scale),
seq(offset, dim(fimg)[2], by = scale))
coords$value <- fimg[cbind(coords$Var1, coords$Var2)]
coords
}
filter_pyr <- tibble(img = list(img),
thresh = clean_initial_img(img, threshold_val = 0),
filter_d = c(5, 15, 25, 35, 45)) %>%
mutate(fd = purrr::map2(img, filter_d, filter_down))
ggplot(data = unnest(filter_pyr, fd), aes(x = value, color = factor(filter_d))) +
geom_density() +
scale_y_continuous(limits = c(0, 100))
blockwise_stats <- function(img, size) {
img <- normalize(img)
dims <- dim(img)
img_coords <- tibble(idx = 1:length(img), d1 = floor((floor((idx - 1)/dims[2]))/size) + 1, d2 = floor(((idx - 1) %% dims[1])/size) + 1) %>%
group_by(d1, d2) %>%
summarize(s = sum(img[idx]), sd = sd(img[idx]), n = n())
}
blockwise <-tibble(img = list(img),
thresh = clean_initial_img(img, threshold_val = 0),
filter_d = c(5, 15, 25, 35, 45)) %>%
mutate(bs = purrr::map2(img, filter_d, blockwise_stats))
tmp <- blockwise %>% unnest(bs) %>%
mutate(p = s/n)
tmp %>%
ggplot(aes(x = p*(1-p), fill = factor(filter_d))) +
geom_density(alpha = .5)
tmp %>% group_by(filter_d) %>% summarize(x = mean(p*(1-p) < .025))
# For a bunch of images...
full_imglist <- list.files("/lss/research/csafe-shoeprints/ShoeImagingPermanent/",
pattern = "0[01]\\d{4}[RL]_\\d{8}_5_1_1", full.names = T)
dir <- tempdir()
file.copy(full_imglist, file.path(dir, basename(full_imglist)))
imglist <- file.path(dir, basename(full_imglist))
shoe_info <- read.csv("~/Projects/CSAFE/2018_Longitudinal_Shoe_Project/Clean_Data/shoe-info.csv") %>%
filter(ShoeID %in% as.numeric(str_sub(basename(imglist), 1, 3))) %>%
select(ShoeID, Brand, Size) %>%
mutate(Size = str_remove(Size, "[ MW]") %>% parse_number()) %>%
crossing(tibble(Mask_foot = c("R", "L"), Shoe_foot = c("L", "R"))) %>%
mutate(mask = purrr::pmap(list(Brand, Size, Mask_foot, ppi = 300), shoe_mask))
scan_info <- tibble(
file = imglist,
ShoeID = str_extract(basename(file), "^\\d{3}") %>% parse_integer(),
Shoe_foot = str_extract(basename(file), "\\d{6}[RL]") %>% str_remove_all("\\d"),
date = str_extract(basename(file), "\\d{8}") %>% parse_date(format = "%Y%m%d")
) %>%
left_join(select(shoe_info, ShoeID, Brand, Size, Shoe_foot)) %>%
group_by(Shoe_foot, Brand) %>%
sample_n(5) %>%
ungroup() %>%
group_by(ShoeID, Shoe_foot) %>%
arrange(desc(date)) %>%
filter(row_number() == 1) %>%
ungroup() %>%
mutate(
img = purrr::map(file, EBImage::readImage, all = F),
img = purrr::map(img, EBImage::channel, "luminance"),
im_dim = purrr::map(img, dim)
)
blockwise <- crossing(scan_info,
filter_d = c(25, 35, 45, 75)) %>%
mutate(bs = purrr::map2(img, filter_d, blockwise_stats))
tmp <- blockwise %>% unnest(bs) %>%
mutate(p = s/n)
tmp %>%
ggplot(aes(x = p*(1-p), fill = factor(filter_d), group = interaction(filter_d, file))) +
geom_density(alpha = .5) +
facet_wrap(Brand~ShoeID)
tmp %>% group_by(filter_d) %>% summarize(x = mean(p*(1-p) < .025))
tmp %>%
ggplot(aes(x =sd, fill = factor(filter_d), group = interaction(filter_d, file))) +
geom_density(alpha = .5) +
facet_wrap(Brand~ShoeID)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.