data("data1")
head(data1)
data("Legends345")
data1 <- Legends345
str(data1)
# Design the model
model <- bayesvl()
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "B", "binom")
model <- bvl_addNode(model, "C", "binom")
model <- bvl_addNode(model, "T", "binom")
model <- bvl_addArc(model, "B", "Lie", "slope")
model <- bvl_addArc(model, "C", "Lie", "slope")
model <- bvl_addArc(model, "T", "Lie", "slope")
bvl_bnScore(model, data1)
bvl_bnStrength(model, data1)
bvl_bnBayes(model, data1)
bvl_bnBarchart(model, data1)
model_string <- bvl_model2Stan(model)
cat(model_string)
options(mc.cores = parallel::detectCores())
# Fit the model
model <- bvl_modelFit(model, data1, warmup = 2000, iter = 5000, chains = 4, cores = 4)
bvl_trace(model)
bvl_plotIntervals(model)
margins <- apply(as.matrix(model@stanfit, stan_params(model)), MARGIN = 2, FUN = quantile, probs = (1:100) / 100)
head(margins, 10)
# Plot the marginal distribution of educate (2nd column)
par(mfrow=c(2,2))
plot(jitter(margins[,1]), pch=20, xlab = "a_Lie - Marginal Distribution (%)",
ylab = "Probability of Lie", main = "Predicted Values", axes=FALSE)
axis(1) # adds x axis
axis(2) # adds y axis
plot(jitter(margins[,2]), pch=20, xlab = "b_B_Lie - Marginal Distribution (%)",
ylab = "Probability of Lie", main = "Predicted Values", axes=FALSE)
axis(1)
axis(2)
plot(jitter(margins[,3]), pch=20, xlab = "b_C_Lie - Marginal Distribution (%)",
ylab = "Probability of Lie", main = "Predicted Values", axes=FALSE)
axis(1)
axis(2)
plot(jitter(margins[,4]), pch=20, xlab = "b_T_Lie - Marginal Distribution (%)",
ylab = "Probability of Lie", main = "Predicted Values", axes=FALSE)
axis(1)
axis(2)
# Design the model
model <- bayesvl()
model <- bvl_addNode(model, "O", "binom")
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "Viol", "binom")
model <- bvl_addNode(model, "VB", "binom")
model <- bvl_addNode(model, "VC", "binom")
model <- bvl_addNode(model, "VT", "binom")
model <- bvl_addNode(model, "Int1", "binom")
model <- bvl_addNode(model, "Int2", "binom")
model <- bvl_addNode(model, "B_and_Viol", "trans")
model <- bvl_addNode(model, "C_and_Viol", "trans")
model <- bvl_addNode(model, "T_and_Viol", "trans")
model <- bvl_addArc(model, "VB", "B_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "B_and_Viol", "*")
model <- bvl_addArc(model, "VC", "C_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "C_and_Viol", "*")
model <- bvl_addArc(model, "VT", "T_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "T_and_Viol", "*")
model <- bvl_addArc(model, "B_and_Viol", "O", "slope")
model <- bvl_addArc(model, "C_and_Viol", "O", "slope")
model <- bvl_addArc(model, "T_and_Viol", "O", "slope")
model <- bvl_addArc(model, "Viol", "O", "slope")
model <- bvl_addNode(model, "B_and_Lie", "trans")
model <- bvl_addNode(model, "C_and_Lie", "trans")
model <- bvl_addNode(model, "T_and_Lie", "trans")
model <- bvl_addArc(model, "VB", "B_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "B_and_Lie", "*")
model <- bvl_addArc(model, "VC", "C_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "C_and_Lie", "*")
model <- bvl_addArc(model, "VT", "T_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "T_and_Lie", "*")
model <- bvl_addArc(model, "B_and_Lie", "O", "slope")
model <- bvl_addArc(model, "C_and_Lie", "O", "slope")
model <- bvl_addArc(model, "T_and_Lie", "O", "slope")
model <- bvl_addArc(model, "Lie", "O", "slope")
model <- bvl_addNode(model, "Int1_or_Int2", "trans", fun = "({0} > 0 ? 1 : 0)", out_type = "int", lower = 0, test = c(0, 1))
model <- bvl_addArc(model, "Int1", "Int1_or_Int2", "+")
model <- bvl_addArc(model, "Int2", "Int1_or_Int2", "+")
model <- bvl_addArc(model, "Int1_or_Int2", "O", "varint", priors = c("a0_ ~ normal(0,5)", "sigma_ ~ normal(0,5)"))
model <- bvl_modelFix(model, data1)
model_string <- bvl_model2Stan(model)
cat(model_string)
options(mc.cores = parallel::detectCores())
# Fit the model
model <- bvl_modelFit(model, data1, warmup = 2000, iter = 5000, chains = 4, cores = 4)
bvl_bnPlot(model)
bvl_plotTrace(model)
bvl_plotIntervals(model)
bvl_plotIntervals(model, c("b_B_and_Lie_O", "b_C_and_Lie_O", "b_T_and_Lie_O", "b_Lie_O"))
bvl_plotIntervals(model, c("b_B_and_Viol_O", "b_C_and_Viol_O", "b_T_and_Viol_O", "b_Viol_O"))
bvl_plotAreas(model, c("b_B_and_Lie_O", "b_C_and_Lie_O", "b_T_and_Lie_O", "b_Lie_O"))
bvl_plotAreas(model, c("b_B_and_Viol_O", "b_C_and_Viol_O", "b_T_and_Viol_O", "b_Viol_O"))
bvl_plotDensity(model, c("b_B_and_Lie_O", "b_C_and_Lie_O", "b_T_and_Lie_O", "b_Lie_O"))
bvl_plotDensity(model, c("b_B_and_Viol_O", "b_C_and_Viol_O", "b_T_and_Viol_O", "b_Viol_O"))
bvl_plotDensity2d(model, "b_B_and_Viol_O", "b_C_and_Viol_O", color_scheme = "orange")
bvl_plotDensity2d(model, "b_B_and_Viol_O", "b_T_and_Viol_O", color_scheme = "orange")
bvl_plotDensity2d(model, "b_C_and_Viol_O", "b_T_and_Viol_O", color_scheme = "blue")
bvl_plotDensity2d(model, "b_B_and_Lie_O", "b_C_and_Lie_O", color_scheme = "orange")
bvl_plotDensity2d(model, "b_B_and_Lie_O", "b_T_and_Lie_O", color_scheme = "orange")
bvl_plotDensity2d(model, "b_C_and_Lie_O", "b_T_and_Lie_O", color_scheme = "blue")
bvl_plotDensity2d(model, "a_Int1_or_Int2[1]", "a_Int1_or_Int2[2]", color_scheme = "purple")
bvl_plotDensity(model, c("a_Int1_or_Int2[1]", "a_Int1_or_Int2[2]"))
paramName <- "yrep_Int1_or_Int2_1"
data1$B_and_Lie <- data1$VB * data1$Lie
data1$C_and_Lie <- data1$VC * data1$Lie
data1$T_and_Lie <- data1$VT * data1$Lie
data1$B_and_Viol <- data1$VB * data1$Viol
data1$C_and_Viol <- data1$VC * data1$Viol
data1$T_and_Viol <- data1$VT * data1$Viol
data1$Int1_or_Int2 <- (data1$Int1 | data1$Int2) * 1
# Design the model
model <- bayesvl()
model <- bvl_addNode(model, "O", "binom")
model <- bvl_addNode(model, "VB", "binom")
model <- bvl_addNode(model, "VC", "binom")
model <- bvl_addNode(model, "VT", "binom")
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "Int1", "binom")
model <- bvl_addNode(model, "Int2", "binom")
model <- bvl_addNode(model, "B_and_Lie", "trans")
model <- bvl_addNode(model, "C_and_Lie", "trans")
model <- bvl_addNode(model, "T_and_Lie", "trans")
model <- bvl_addArc(model, "VB", "B_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "B_and_Lie", "*")
model <- bvl_addArc(model, "VC", "C_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "C_and_Lie", "*")
model <- bvl_addArc(model, "VT", "T_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "T_and_Lie", "*")
model <- bvl_addArc(model, "B_and_Lie", "O", "slope")
model <- bvl_addArc(model, "C_and_Lie", "O", "slope")
model <- bvl_addArc(model, "T_and_Lie", "O", "slope")
model <- bvl_addArc(model, "Lie", "O", "slope")
model <- bvl_addNode(model, "Int1_or_Int2", "trans", fun = "({0} > 0 ? 1 : 0)", out_type = "int", lower = 0, test = c(0, 1))
model <- bvl_addArc(model, "Int1", "Int1_or_Int2", "+")
model <- bvl_addArc(model, "Int2", "Int1_or_Int2", "+")
model <- bvl_addArc(model, "Int1_or_Int2", "O", "varint")
model <- bvl_modelFix(model, data1)
model_string <- bvl_model2Stan(model)
cat(model_string)
options(mc.cores = parallel::detectCores())
# Fit the model
model <- bvl_modelFit(model, data1, warmup = 2000, iter = 5000, chains = 4, cores = 4)
bvl_trace(model)
#################################
model <- bayesvl()
model <- bvl_addNode(model, "O", "binom")
model <- bvl_addNode(model, "VB", "binom")
model <- bvl_addNode(model, "VC", "binom")
model <- bvl_addNode(model, "VT", "binom")
model <- bvl_addNode(model, "Viol", "binom")
model <- bvl_addNode(model, "Int1", "binom")
model <- bvl_addNode(model, "Int2", "binom")
model <- bvl_addNode(model, "B_and_Viol", "trans")
model <- bvl_addNode(model, "C_and_Viol", "trans")
model <- bvl_addNode(model, "T_and_Viol", "trans")
model <- bvl_addArc(model, "VB", "B_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "B_and_Viol", "*")
model <- bvl_addArc(model, "VC", "C_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "C_and_Viol", "*")
model <- bvl_addArc(model, "VT", "T_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "T_and_Viol", "*")
model <- bvl_addArc(model, "B_and_Viol", "O", "slope")
model <- bvl_addArc(model, "C_and_Viol", "O", "slope")
model <- bvl_addArc(model, "T_and_Viol", "O", "slope")
model <- bvl_addArc(model, "Viol", "O", "slope")
model <- bvl_addNode(model, "Int1_or_Int2", "trans", fun = "({0} > 0 ? 1 : 0)", out_type = "int", lower = 0)
model <- bvl_addArc(model, "Int1", "Int1_or_Int2", "+")
model <- bvl_addArc(model, "Int2", "Int1_or_Int2", "+")
model <- bvl_addArc(model, "Int1_or_Int2", "O", "varint")
model <- bvl_modelFix(model, data1)
model_string <- bvl_model2Stan(model)
cat(model_string)
options(mc.cores = parallel::detectCores())
# Fit the model
model <- bvl_modelFit(model, data1, warmup = 2000, iter = 5000, chains = 4, cores = 4)
bvl_trace(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.