data1 <- read.csv("/Users/Shared/Previously Relocated Items/Security/Statistics/network/bayesvl/LectureNotes/4.Stem/Data/5000Toan.csv", header = TRUE)
head(data1)
library(tidyr)
data1 <- data1 %>% drop_na(TimeSoc, TimeSci)
data1$GradeNum <- as.factor(paste0(data1$Sex, "_", data1$Gradeid))
#data1$Sex_Grade <- factor(paste0(data1$Sex,"_",data1$Gradeid))
#data1$Sex <- as.numeric(data1$Sex)
#data1$Gradeid <- as.numeric(data1$Gradeid)
#Gradeid2Sex <- unique(data1[c("Gradeid","Sex")])[,"Sex"]
# Design the model
model <- bayesvl()
model <- bvl_addNode(model, "APS45ID", "norm")
model <- bvl_addNode(model, "TimeSci", "cat")
model <- bvl_addNode(model, "Sex", "cat")
model <- bvl_addNode(model, "GradeNum", "cat")
model <- bvl_addArc(model, "TimeSci", "APS45ID", "slope")
model <- bvl_addArc(model, "Sex", "GradeNum", "varint")
model <- bvl_addArc(model, "GradeNum", "APS45ID", "varint")
model <- bvl_modelFix(model, data1)
model_string <- bvl_model2Stan(model)
cat(model_string)
options(mc.cores = parallel::detectCores())
# Fit the model
model <- bvl_modelFit(model, data1, warmup = 5000, iter = 10000, chains = 4, cores = 4)
bvl_trace(model)
###############
stem <- read.csv(file="/Users/Shared/Previously Relocated Items/Security/Statistics/STEM/STEM_model1.csv",header=T)
stem$school_grade <- factor(paste0(stem$school,"_",stem$gradeid))
stem$schoolid <- as.numeric(stem$school)
stem$gradenum <- as.numeric(stem$school_grade)
# Design the model
model <- bayesvl()
model <- bvl_addNode(model, "aps45id", "norm")
model <- bvl_addNode(model, "schoolid", "cat")
model <- bvl_addNode(model, "gradenum", "cat")
model <- bvl_addNode(model, "sex", "cat")
model <- bvl_addArc(model, "sex", "aps45id", "slope")
model <- bvl_addArc(model, "schoolid", "gradenum", "varint")
model <- bvl_addArc(model, "gradenum", "aps45id", "varint")
model <- bvl_modelFix(model, data1)
model_string <- bvl_model2Stan(model)
cat(model_string)
options(mc.cores = parallel::detectCores())
# Fit the model
model <- bvl_modelFit(model, stem, warmup = 5000, iter = 10000, chains = 4, cores = 4)
###############
stem <- read.csv(file="/Users/Shared/Previously Relocated Items/Security/Statistics/STEM/STEM_model1.csv",header=T)
library(tidyr)
data1 <- data1 %>% drop_na(timesoc, timesci)
stem$sex_grade <- factor(paste0(stem$sex,"_",stem$gradeid))
stem$gradenum <- as.numeric(stem$sex_grade)
# Design the model
model <- bayesvl()
model <- bvl_addNode(model, "aps45id", "norm")
model <- bvl_addNode(model, "timesci", "cat")
model <- bvl_addNode(model, "sex", "cat")
model <- bvl_addNode(model, "gradenum", "cat")
model <- bvl_addArc(model, "timesci", "aps45id", "slope")
model <- bvl_addArc(model, "sex", "gradenum", "varint")
model <- bvl_addArc(model, "gradenum", "aps45id", "varint")
model <- bvl_modelFix(model, data1)
model_string <- bvl_model2Stan(model)
cat(model_string)
options(mc.cores = parallel::detectCores())
# Fit the model
model <- bvl_modelFit(model, stem, warmup = 2000, iter = 5000, chains = 4, cores = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.