class_update_train_fdp <- function(n, K , alpha, name_new, uniq_clabs, clabs,
y, x, x_cat_shell, x_num_shell,
cat_idx, num_idx,
beta_shell, psi_shell,
beta_new, psi_new, cat_new, num_new){
# shells
c_shell <- matrix(NA, nrow = n, ncol = K + 1)
colnames(c_shell) <- c(uniq_clabs, name_new)
## prior for existing cluster
pr_exist <- matrix(NA, nrow = n, ncol = K)
colnames(pr_exist) <- uniq_clabs
pr_new <- numeric(length = n)
clabs <- factor(clabs, levels = uniq_clabs)
for(j in 1:n){
n_min_j <- table(clabs[-j] )
pr_exist[j,] <- log( (alpha*(n_min_j==0) + n_min_j)/(j + alpha - 1) )
pr_new[j] <- log( (alpha) / (j + alpha - 1) )
}
## existing clusters
for(k in uniq_clabs){
lk_exist <- numeric(length = n)
for(p in cat_idx){
lk_exist <- lk_exist + dbinom(x[ ,p], 1, x_cat_shell[[p]][1,k], T)
}
for(p in num_idx){
lk_exist <- lk_exist + dnorm(x[, p],
x_num_shell[[p]][[1]][,k],
sqrt(x_num_shell[[p]][[2]][,k]), T )
}
lk_exist <- lk_exist + dnorm(x = y,
mean = x %*% beta_shell[,k, drop=F],
sd = sqrt(psi_shell[,k]), T)
c_shell[,k] <- lk_exist + pr_exist[,k]
}
## New clusters
lk_new <- numeric(length = n)
for(p in cat_idx){
lk_new <- lk_new + dbinom(x[ ,p], 1, cat_new[p], T)
}
for(p in num_idx){
lk_new <- lk_new + dnorm(x[, p], num_new[1,p], sqrt(num_new[2,p]), T)
}
lk_new <- lk_new + dnorm(x = y,
mean = x %*% t(beta_new),
sd = sqrt(psi_new), T)
c_shell[,name_new] <- lk_new + pr_new
weights <- t(apply(c_shell, 1, function(x) exp(x)/sum(exp(x)) ))
return(weights)
}
post_mean_test_fdp = function(n, K, alpha, name_new, uniq_clabs, x,
x_cat_shell, x_num_shell, cat_idx, num_idx,
cat_new, num_new, clabs, beta_shell, beta_new){
# shells
c_shell <- matrix(NA, nrow = n, ncol = K + 1)
colnames(c_shell) <- c(uniq_clabs, name_new)
post_mean_mat <- matrix(NA, nrow=n, ncol= K + 1)
colnames(post_mean_mat) = c(uniq_clabs, name_new)
## prior for existing cluster
clabs <- factor(clabs, levels = uniq_clabs)
pr_exist <- log(table(clabs)/(length(clabs)+alpha))
## existing clusters
for(k in uniq_clabs){
lk_exist <- numeric(length = n)
for(p in cat_idx){
lk_exist <- lk_exist + dbinom(x[ ,p], 1, x_cat_shell[[p]][1,k], T)
}
for(p in num_idx){
lk_exist <- lk_exist + dnorm(x[, p],
x_num_shell[[p]][[1]][,k],
sqrt(x_num_shell[[p]][[2]][,k]), T )
}
c_shell[,k] <- lk_exist + pr_exist[k]
post_mean_mat[, k] = x %*% beta_shell[,k, drop=F]
}
## New clusters
lk_new <- numeric(length = n)
for(p in cat_idx){
lk_new <- lk_new + dbinom(x[ ,p], 1, cat_new[p], T)
}
for(p in num_idx){
lk_new <- lk_new + dnorm(x[, p], num_new[1,p], sqrt(num_new[2,p]), T)
}
c_shell[,name_new] <- lk_new + log(alpha/(length(clabs)+alpha))
post_mean_mat[, name_new] = x %*% t(beta_new)
weights <- t(apply(c_shell, 1, function(x) exp(x)/sum(exp(x)) ))
pred = rowSums( post_mean_mat * weights )
return(pred)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.