class_update_train <- function(n, K , alpha, name_new, uniq_clabs, clabs,
y, x, z, x_cat_shell, x_num_shell,
cat_idx, num_idx,
beta_shell, psi_shell, gamma_shell,
beta_new, psi_new, cat_new, num_new, gamma_new){
# shells
c_shell <- matrix(NA, nrow = n, ncol = K + 1)
colnames(c_shell) <- c(uniq_clabs, name_new)
## prior for existing cluster
pr_exist <- matrix(NA, nrow = n, ncol = K)
colnames(pr_exist) <- uniq_clabs
pr_new <- numeric(length = n)
clabs <- factor(clabs, levels = uniq_clabs)
for(j in 1:n){
n_min_j <- table(clabs[-j] )
pr_exist[j,] <- log( (alpha*(n_min_j==0) + n_min_j)/(j + alpha - 1) )
pr_new[j] <- log( (alpha) / (j + alpha - 1) )
}
## existing clusters
for(k in uniq_clabs){
lk_exist <- numeric(length = n)
for(p in cat_idx){
lk_exist <- lk_exist + dbinom(x[ ,p], 1, x_cat_shell[[p]][1,k], T)
}
for(p in num_idx){
lk_exist <- lk_exist + dnorm(x[, p],
x_num_shell[[p]][[1]][,k],
sqrt(x_num_shell[[p]][[2]][,k]), T )
}
lk_exist <- lk_exist + dnorm(x = y,
mean = x %*% beta_shell[,k, drop=F],
sd = sqrt(psi_shell[,k]), T)*as.numeric(z==0)
lk_exist <- lk_exist + dbinom(z, 1,
prob = LaplacesDemon::invlogit( x %*% gamma_shell[,k,drop=F]), T )
c_shell[,k] <- lk_exist + pr_exist[,k]
}
## New clusters
lk_new <- numeric(length = n)
for(p in cat_idx){
lk_new <- lk_new + dbinom(x[ ,p], 1, cat_new[p], T)
}
for(p in num_idx){
lk_new <- lk_new + dnorm(x[, p], num_new[1,p], sqrt(num_new[2,p]), T)
}
lk_new <- lk_new + dnorm(x = y,
mean = x %*% t(beta_new),
sd = sqrt(psi_new), T)*as.numeric(z==0)
lk_new <- lk_new + dbinom(z, 1, LaplacesDemon::invlogit( x %*% t(gamma_new) ), T)
c_shell[,name_new] <- lk_new + pr_new
weights <- t(apply(c_shell, 1, function(x) exp(x)/sum(exp(x)) ))
return(weights)
}
class_update_test <- function(n, K , alpha, name_new, uniq_clabs, clabs, x,
x_cat_shell, x_num_shell,
cat_idx, num_idx,
cat_new, num_new){
# shells
c_shell <- matrix(NA, nrow = n, ncol = K + 1)
colnames(c_shell) <- c(uniq_clabs, name_new)
## prior for existing cluster
clabs <- factor(clabs, levels = uniq_clabs)
pr_exist <- log(table(clabs)/(length(clabs)+alpha))
## existing clusters
for(k in uniq_clabs){
lk_exist <- numeric(length = n)
for(p in cat_idx){
lk_exist <- lk_exist + dbinom(x[ ,p], 1, x_cat_shell[[p]][1,k], T)
}
for(p in num_idx){
lk_exist <- lk_exist + dnorm(x[, p],
x_num_shell[[p]][[1]][,k],
sqrt(x_num_shell[[p]][[2]][,k]), T )
}
c_shell[,k] <- lk_exist + pr_exist[k]
}
## New clusters
lk_new <- numeric(length = n)
for(p in cat_idx){
lk_new <- lk_new + dbinom(x[ ,p], 1, cat_new[p], T)
}
for(p in num_idx){
lk_new <- lk_new + dnorm(x[, p], num_new[1,p], sqrt(num_new[2,p]), T)
}
c_shell[,name_new] <- lk_new + log(alpha/(length(clabs)+alpha))
weights <- t(apply(c_shell, 1, function(x) exp(x)/sum(exp(x)) ))
return(weights)
}
post_pred_draw_train <- function(n, x, pc, beta_shell, psi_shell, gamma_shell){
y_pp <- numeric(length = n)
z_pp <- numeric(length = n)
clabs <- unique(pc)
for( k in clabs ){
y_pp[pc==k] <- rnorm(n = sum(pc==k),
mean = x[pc==k,, drop=F] %*% beta_shell[,k,drop=F],
sd = sqrt(psi_shell[1,k]) )
z_pp[pc==k] <- rbinom(n = sum(pc==k), 1,
prob = LaplacesDemon::invlogit( x[pc==k, , drop=F] %*% gamma_shell[,k, drop=F] ) )
}
y_pp[z_pp==1] <- 0
return(y_pp)
}
post_pred_draw_test <- function(n, x, pc, beta_shell, psi_shell, gamma_shell,
name_new, beta_new, psi_new, gamma_new){
y_pp <- numeric(length = n)
z_pp <- numeric(length = n)
clabs <- unique(pc)
for( k in setdiff(clabs, name_new) ){
y_pp[pc==k] <- rnorm(n = sum(pc==k),
mean = x[pc==k,, drop=F] %*% beta_shell[,k,drop=F],
sd = sqrt(psi_shell[1,k]) )
z_pp[pc==k] <- rbinom(n = sum(pc==k), 1,
prob = LaplacesDemon::invlogit( x[pc==k, , drop=F ] %*% gamma_shell[,k, drop=F] ) )
}
y_pp[pc==name_new] <- rnorm(n = sum(pc==name_new),
mean = x[pc==name_new,, drop=F] %*% t(beta_new),
sd = sqrt(psi_new) )
z_pp[pc==name_new] <- rbinom(n = sum(pc==name_new), 1,
prob = LaplacesDemon::invlogit( x[pc==name_new, ] %*% t(gamma_new) ) )
y_pp[z_pp==1] <- 0
return(y_pp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.