library(r02pro)
library(ggplot2)
library(gridExtra)
library(tidyverse)
library(forcats)
load("fifa_summary.RData")
#ntrain = 400
test.err <- c(result_400$error_test,result_400$error_basic_test)
train.err <- c(result_400$error_train,result_400$error_basic_train)
var.test <- c(result_400$var_test,result_400$var_basic_test)
var.train <- c(result_400$var_test,result_400$var_basic_test)
md_name <- c("lda","knn","logistic","svm","tree","super",
"lda_it","knn_it","logistic_it","svm_it","tree_it","super_it")
md_name <- paste("mRaSE",md_name,sep = "_")
md_name_basic <- c("lda","knn","logistic","svm","tree","rf","dnn")
d400 <-
data.frame(model = c(md_name,md_name_basic),
test.error = test.err,
train.error = train.err,
var.test = var.test,
var.train = var.train)
d400 <- d400[,c(1,2,4)]
d400[,2] <- d400[,2]*100
d400[,3] <- d400[,3]*1000
rk_400 <- feature[,,1]/(100*200)
rownames(rk_400) <- md_name
colnames(rk_400) <- 1:1876
#ntrain = 600
test.err <- c(result_600$error_test,result_600$error_basic_test)
train.err <- c(result_600$error_train,result_600$error_basic_train)
var.test <- c(result_600$var_test,result_600$var_basic_test)
var.train <- c(result_600$var_test,result_600$var_basic_test)
md_name <- c("lda","knn","logistic","svm","tree","super",
"lda_it","knn_it","logistic_it","svm_it","tree_it","super_it")
md_name <- paste("mRaSE",md_name,sep = "_")
md_name_basic <- c("lda","knn","logistic","svm","tree","rf","dnn")
d600 <-
data.frame(model = c(md_name,md_name_basic),
test.error = test.err,
train.error = train.err,
var.test = var.test,
var.train = var.train)
d600 <- d600[,c(1,2,4)]
d600[,2] <- d600[,2]*100
d600[,3] <- d600[,3]*1000
rk_600 <- feature[,,2]/(100*200)
rownames(rk_600) <- md_name
colnames(rk_600) <- 1:1876
#ntrain = 800
test.err <- c(result_800$error_test,result_800$error_basic_test)
train.err <- c(result_800$error_train,result_800$error_basic_train)
var.test <- c(result_800$var_test,result_800$var_basic_test)
var.train <- c(result_800$var_test,result_800$var_basic_test)
md_name <- c("lda","knn","logistic","svm","tree","super",
"lda_it","knn_it","logistic_it","svm_it","tree_it","super_it")
md_name <- paste("mRaSE",md_name,sep = "_")
md_name_basic <- c("lda","knn","logistic","svm","tree","rf","dnn")
d800 <-
data.frame(model = c(md_name,md_name_basic),
test.error = test.err,
train.error = train.err,
var.test = var.test,
var.train = var.train)
d800 <- d800[,c(1,2,4)]
d800[,2] <- d800[,2]*100
d800[,3] <- d800[,3]*1000
rk_800 <- feature[,,3]/(100*200)
rownames(rk_800) <- md_name
colnames(rk_800) <- 1:1876
d400$model <- c(paste("mRaSE",c("LDA","KNN","Logi","SVM","Tree"),
sep = "-"),"SmRaSE",
paste("mRaSE$_1$",c("LDA","KNN","Logi","SVM","Tree"),
sep = "-"),"SmRaSE$_1$",
c("LDA","KNN","Logi","SVM","Tree","RF","DNN"))
d600$model <- c(paste("mRaSE",c("LDA","KNN","Logi","SVM","Tree"),
sep = "-"),"SmRaSE",
paste("mRaSE$_1$",c("LDA","KNN","Logi","SVM","Tree"),
sep = "-"),"SmRaSE$_1$",
c("LDA","KNN","Logi","SVM","Tree","RF","DNN"))
d800$model <- c(paste("mRaSE",c("LDA","KNN","Logi","SVM","Tree"),
sep = "-"),"SmRaSE",
paste("mRaSE$_1$",c("LDA","KNN","Logi","SVM","Tree"),
sep = "-"),"SmRaSE$_1$",
c("LDA","KNN","Logi","SVM","Tree","RF","DNN"))
# 400: iter = 1 SVM (10)
# 600: iter = 1 Logi (9)
# 800: iter = 1 Logi (9)
# mst_ft <- stat_tab[c(10,21,33),]
mst_ft <- matrix(0,ncol = 20,nrow = 3)
mst_ft[1,] <- order(unlist(rk_400[10,]),decreasing = T)[1:20]
mst_ft[2,] <- order(unlist(rk_600[9,]),decreasing = T)[1:20]
mst_ft[3,] <- order(unlist(rk_800[9,]),decreasing = T)[1:20]
rk_400 <- as_tibble(rk_400)
tb_400 <-
rk_400 %>%
mutate(model = rep(md_name[1:6],2),
iter = as.factor(rep(c(0,1),c(6,6)))) %>%
pivot_longer(!iter & !model,names_to = "feature",values_to = "percentage") %>%
group_by(model,iter) %>%
summarise(feature = c(mst_ft[1,],rep("N",1876 - length(mst_ft[1,]))),
percentage = c(percentage[mst_ft[1,]],
percentage[-mst_ft[1,]])) %>%
ungroup()
rk_600 <- as_tibble(rk_600)
tb_600 <-
rk_600 %>%
mutate(model = rep(md_name[1:6],2),
iter = as.factor(rep(c(0,1),c(6,6)))) %>%
pivot_longer(!iter & !model,names_to = "feature",values_to = "percentage") %>%
group_by(model,iter) %>%
summarise(feature = c(mst_ft[2,],rep("N",1876 - length(mst_ft[2,]))),
percentage = c(percentage[mst_ft[2,]],
percentage[-mst_ft[2,]])) %>%
ungroup()
rk_800 <- as_tibble(rk_800)
tb_800 <-
rk_800 %>%
mutate(model = rep(md_name[1:6],2),
iter = as.factor(rep(c(0,1),c(6,6)))) %>%
pivot_longer(!iter & !model,names_to = "feature",values_to = "percentage") %>%
group_by(model,iter) %>%
summarise(feature = c(mst_ft[3,],rep("N",1876 - length(mst_ft[3,]))),
percentage = c(percentage[mst_ft[3,]],
percentage[-mst_ft[3,]])) %>%
ungroup()
tl <- factor(c("mRaSE-LDA","mRaSE-KNN","mRaSE-Logistic","mRaSE-SVM","mRaSe-tree","SmRaSE"),
levels = c("mRaSE-LDA","mRaSE-KNN","mRaSE-Logistic","mRaSE-SVM","mRaSe-tree","SmRaSE"))
tb_400 <- mutate(tb_400,n = 400,model = factor(model) %>% fct_recode("KNN" = "mRaSE_knn",
"LDA" = "mRaSE_lda",
"Logi" = "mRaSE_logistic",
"SVM" = "mRaSE_svm",
"Tree" = "mRaSE_tree",
"Super" = "mRaSE_super") %>%
fct_relevel(c("LDA","KNN","Logi","SVM","Tree","Super")))
tb_600 <- mutate(tb_600,n = 600,model = factor(model) %>% fct_recode("KNN" = "mRaSE_knn",
"LDA" = "mRaSE_lda",
"Logi" = "mRaSE_logistic",
"SVM" = "mRaSE_svm",
"Tree" = "mRaSE_tree",
"Super" = "mRaSE_super") %>%
fct_relevel(c("LDA","KNN","Logi","SVM","Tree","Super")))
tb_800 <- mutate(tb_800,n = 800,model = factor(model) %>% fct_recode("KNN" = "mRaSE_knn",
"LDA" = "mRaSE_lda",
"Logi" = "mRaSE_logistic",
"SVM" = "mRaSE_svm",
"Tree" = "mRaSE_tree",
"Super" = "mRaSE_super") %>%
fct_relevel(c("LDA","KNN","Logi","SVM","Tree","Super")))
tb <- rbind(tb_400,tb_600,tb_800)
# pdf(file = "C:/Users/74714/OneDrive/Desktop/realdata_fifa/realdata_fifa_feature_plot.pdf",
# width = 11.54,
# height = 6.20)
load("fifa22.RData")
names(spx)[mst_ft]
feature_name <- c(names(spx)[mst_ft],"N")
# ggplot() +
# geom_bar(mapping = aes(fill = iter,
# x = reorder(feature,-percentage),
# y = percentage),
# position = "dodge",
# stat="identity",data = tb %>% filter(feature != "N")) +
# geom_boxplot(aes(fill = iter,x = feature,y = percentage),data = tb %>% filter(feature == "N")) +
# facet_grid(cols =vars(n) ,rows = vars(model)) +
# theme(strip.text.x = element_text(size = 10),
# strip.text.y = element_text(size = 10),
# axis.title.x = element_text(size = 12),
# axis.title.y = element_text(size = 12),
# axis.text.x = element_text(angle = 45, vjust = 1, hjust=1,size = 6))
# # +
# # scale_x_discrete(labels= str_wrap(feature_name,width = 2))
# dev.off()
# try on tb_400
tb_400$feature <- fct_relevel(tb_400$feature,as.character(c(mst_ft[1,],"N")))
ggplot() +
geom_bar(mapping = aes(fill = iter,
x = feature,
y = percentage),
position = "dodge",
stat="identity",data = tb_400 %>% filter(feature != "N")) +
geom_boxplot(aes(fill = iter,
x = length(mst_ft[1,]) + 1,
y = percentage),
data = tb_400 %>% filter(feature == "N")) +
scale_x_discrete(limits = c(mst_ft[1,],"N")) +
facet_grid(rows = vars(model))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.