RaSubsetsc_rg <- function(xtrain, ytrain, xval, yval, B2, S, model, k, criterion, cv, t0.mle = NULL, t1.mle = NULL, mu0.mle = NULL, mu1.mle = NULL, Sigma.mle = NULL, Sigma0.mle = NULL, Sigma1.mle = NULL, gam = NULL, kl.k = kl.k, XX = NULL, XY = NULL, ...) {
list2env(list(...), environment())
n <- length(ytrain)
p <- ncol(xtrain)
if (model == "lm") {
D.train <- data.frame(x = xtrain, y = ytrain)
if (criterion == "mse") {
subspace.list <- sapply(1:B2, function(i) {
Si <- S[, i][!is.na(S[, i])] # current subspace
sum(ytrain^2) - t(ytrain) %*% xtrain[, Si, drop = F] %*% solve(t(xtrain[, Si, drop = F]) %*% xtrain[, Si, drop = F]) %*% t(xtrain[, Si, drop = F]) %*% ytrain
# fit <- lm(y ~., data = D.train[, c(Si, ncol(D.train))])
# mean(residuals(fit)^2)
})
} else if (criterion == "bic") {
subspace.list <- sapply(1:B2, function(i) {
Si <- S[, i][!is.na(S[, i])] # current subspace
sigma.hat2 <- (sum(ytrain^2) - t(XY[Si, ,drop = F]) %*% solve(XX[Si, Si, drop = F]) %*% XY[Si, ,drop = F])/n
n*log(sigma.hat2) + length(Si)*log(n)
})
} else if (criterion == "aic") {
subspace.list <- sapply(1:B2, function(i) {
Si <- S[, i][!is.na(S[, i])] # current subspace
sigma.hat2 <- (sum(ytrain^2) - t(XY[Si, ,drop = F]) %*% solve(XX[Si, Si, drop = F]) %*% XY[Si, ,drop = F])/n
n*log(sigma.hat2) + length(Si)*2
})
} else if (criterion == "ebic") {
subspace.list <- sapply(1:B2, function(i) {
Si <- S[, i][!is.na(S[, i])] # current subspace
sigma.hat2 <- (sum(ytrain^2) - t(XY[Si, ,drop = F]) %*% solve(XX[Si, Si, drop = F]) %*% XY[Si, ,drop = F])/n
# sigma.hat2 <- (sum(ytrain^2) - t(ytrain) %*% xtrain[, Si, drop = F] %*% solve(t(xtrain[, Si, drop = F]) %*% xtrain[, Si, drop = F]) %*% t(xtrain[, Si, drop = F]) %*% ytrain)/n
n*log(sigma.hat2) + length(Si)*log(n) + 2*gam*length(Si)*log(p)
})
}
i0 <- which.min(subspace.list)
S <- S[!is.na(S[, i0]), i0] # final optimal subspace
}
if (model == "knn") {
if (criterion == "cv") {
folds <- createFolds(ytrain, cv)
subspace.list <- sapply(1:B2, function(i) {
d <- length(S[, i][!is.na(S[, i])]) # subspace size
Si <- matrix(S[, i][!is.na(S[, i])], nrow = d) # current subspace
xtrain.r <- xtrain[, Si, drop = F]
knn.test <- sapply(1:cv, function(j) {
fit <- knnreg(x = xtrain.r[-folds[[j]], , drop = F], y = ytrain[-folds[[j]]], k = k, use.all = FALSE)
mean((predict(fit, xtrain.r[folds[[j]], , drop = F]) - ytrain[folds[[j]]])^2)
# mean((knn.reg(train = xtrain.r[-folds[[j]], , drop = F], y = ytrain[-folds[[j]]], test = xtrain.r[folds[[j]], , drop = F], k = k)$pred - ytrain[folds[[j]]])^2)
})
mean(knn.test)
})
i0 <- which.min(subspace.list)
S <- S[!is.na(S[, i0]), i0] # final optimal subspace
}
}
if (model == "kernelknn") {
if (criterion == "cv") {
folds <- createFolds(ytrain, cv)
subspace.list <- sapply(1:B2, function(i) {
d <- length(S[, i][!is.na(S[, i])]) # subspace size
Si <- matrix(S[, i][!is.na(S[, i])], nrow = d) # current subspace
xtrain.r <- xtrain[, Si, drop = F]
knn.test <- sapply(1:cv, function(j) {
ypred <- KernelKnn(data = xtrain.r[-folds[[j]], , drop = F], TEST_data = xtrain.r[folds[[j]], , drop = F], y = ytrain[-folds[[j]]], k = k, regression = T, ...)
mean((ypred - ytrain[folds[[j]]])^2)
# mean((knn.reg(train = xtrain.r[-folds[[j]], , drop = F], y = ytrain[-folds[[j]]], test = xtrain.r[folds[[j]], , drop = F], k = k)$pred - ytrain[folds[[j]]])^2)
})
mean(knn.test)
})
i0 <- which.min(subspace.list)
S <- S[!is.na(S[, i0]), i0] # final optimal subspace
}
}
if (model == "svm") {
if (!is.character(kernel)) {
kernel <- "radial"
}
if (criterion == "training") {
subspace.list <- sapply(1:B2, function(i) {
# the last row is training error for each i in 1:B2
Si <- S[, i][!is.na(S[, i])] # current subspace
xtrain.r <- xtrain[, Si, drop = F]
mean(as.numeric(predict(svm(x = xtrain.r, y = ytrain, kernel = kernel, type = "eps-regression"), xtrain.r)) - 1 !=
ytrain, na.rm = TRUE)
})
}
if (criterion == "validation") {
subspace.list <- sapply(1:B2, function(i) {
# the last row is training error for each i in 1:B2
Si <- S[, i][!is.na(S[, i])] # current subspace
xtrain.r <- xtrain[, Si, drop = F]
xval.r <- xval[, Si, drop = F]
mean(as.numeric(predict(svm(x = xtrain.r, y = ytrain, kernel = kernel, type = "eps-regression"), xval.r)) - 1 !=
yval, na.rm = TRUE)
})
}
if (criterion == "cv") {
folds <- createFolds(ytrain, k = cv)
subspace.list <- sapply(1:B2, function(i) {
# the last row is training error for each i in 1:B2
Si <- S[, i][!is.na(S[, i])] # current subspace
mean(sapply(1:cv, function(j) {
fit <- svm(x = xtrain[-folds[[j]], Si, drop = F], y = ytrain[-folds[[j]]], kernel = kernel, type = "eps-regression")
mean((predict(fit, xtrain[folds[[j]], Si, drop = F]) - ytrain[folds[[j]]])^2, na.rm = TRUE)
}))
})
}
if (criterion == "ebic") {
stop("minimizing eBIC is not available when model = \"svm\", please choose other criterion")
}
if (criterion == "ric") {
stop("minimizing RIC is not available when model = \"svm\", please choose other criterion")
}
if (criterion == "loo") {
stop("minimizing leave-one-out error is not available when model = \"svm\", please choose other criterion")
}
i0 <- which.min(subspace.list)
S <- S[!is.na(S[, i0]), i0] # final optimal subspace
}
if (model == "randomforest") {
if (criterion == "training") {
subspace.list <- sapply(1:B2, function(i) {
# the last row is training error for each i in 1:B2
Si <- S[, i][!is.na(S[, i])] # current subspace
xtrain.r <- xtrain[, Si, drop = F]
mean(as.numeric(predict(randomForest(x = xtrain.r, y = factor(ytrain)), xtrain.r)) - 1 != factor(ytrain), na.rm = TRUE)
})
}
if (criterion == "validation") {
subspace.list <- sapply(1:B2, function(i) {
# the last row is training error for each i in 1:B2
Si <- S[, i][!is.na(S[, i])] # current subspace
xtrain.r <- xtrain[, Si, drop = F]
xval.r <- xval[, Si, drop = F]
mean(as.numeric(predict(randomForest(x = xtrain.r, y = factor(ytrain)), xval.r)) - 1 != factor(yval), na.rm = TRUE)
})
}
if (criterion == "cv") {
folds <- createFolds(ytrain, k = cv)
subspace.list <- sapply(1:B2, function(i) {
# the last row is training error for each i in 1:B2
Si <- S[, i][!is.na(S[, i])] # current subspace
mean(sapply(1:cv, function(j) {
# fit <- randomForest(x = xtrain[-folds[[j]], Si, drop = F], y = ytrain[-folds[[j]]], ...)
# mean((as.numeric(predict(fit, xtrain[folds[[j]], Si, drop = F])) - ytrain[folds[[j]]])^2)
fit <- ranger(y ~ ., data = data.frame(x = xtrain[-folds[[j]], Si, drop = F], y = ytrain[-folds[[j]]]), ...)
mean((as.numeric(predict(fit, data = data.frame(x = xtrain[folds[[j]], Si, drop = F]))$predictions) - ytrain[folds[[j]]])^2)
}))
})
}
if (criterion == "ebic") {
stop("minimizing eBIC is not available when model = \"randomforest\", please choose other criterion")
}
if (criterion == "ric") {
stop("minimizing RIC is not available when model = \"randomforest\", please choose other criterion")
}
if (criterion == "loo") {
stop("minimizing leave-one-out error is not available when model = \"randomforest\", please choose other criterion")
}
i0 <- which.min(subspace.list)
S <- S[!is.na(S[, i0]), i0] # final optimal subspace
}
if (model == "tree") {
if (criterion == "training") {
subspace.list <- sapply(1:B2, function(i) {
# the last row is training error for each i in 1:B2
Si <- S[, i][!is.na(S[, i])] # current subspace
xtrain.r <- xtrain[, Si, drop = F]
fit <- rpart(y ~ ., data = data.frame(x = xtrain.r, y = ytrain), method = "class")
mean((as.numeric(predict(fit, data.frame(x = xtrain.r), type = "class")) - 1) != ytrain, na.rm = TRUE)
})
}
if (criterion == "validation") {
subspace.list <- sapply(1:B2, function(i) {
# the last row is training error for each i in 1:B2
Si <- S[, i][!is.na(S[, i])] # current subspace
xtrain.r <- xtrain[, Si, drop = F]
xval.r <- xval[, Si, drop = F]
fit <- rpart(y ~ ., data = data.frame(x = xtrain.r, y = ytrain), method = "class")
mean((as.numeric(predict(fit, data.frame(x = xval.r), type = "class")) - 1) != yval, na.rm = TRUE)
})
}
if (criterion == "cv") {
folds <- createFolds(ytrain, k = cv)
subspace.list <- sapply(1:B2, function(i) {
# the last row is training error for each i in 1:B2
Si <- S[, i][!is.na(S[, i])] # current subspace
mean(sapply(1:cv, function(j) {
fit <- rpart(y ~ ., data = data.frame(x = xtrain[-folds[[j]], Si, drop = F], y = ytrain[-folds[[j]]]), method = "anova", ...)
mean((as.numeric(predict(fit, data.frame(x = xtrain[folds[[j]], Si, drop = F]), type = "vector")) - ytrain[folds[[j]]])^2)
}))
})
}
if (criterion == "ric") {
stop("minimizing RIC is not available when model = \"tree\", please choose other criterion")
}
if (criterion == "ebic") {
stop("minimizing eBIC is not available when model = \"tree\", please choose other criterion")
}
if (criterion == "loo") {
stop("minimizing leave-one-out error is not available when model = \"tree\", please choose other criterion")
}
i0 <- which.min(subspace.list)
S <- S[!is.na(S[, i0]), i0] # final optimal subspace
}
return(list(subset = S))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.