loglik <- function(X, y, beta, family) {
K <- dim(beta)[2]
link <- cbind(1, X) %*% beta
yrep <- repmat(y, 1, K)
if (family == "gaussian") {
return(apply((yrep - link)^2, 2, sum))
}
if (family == "poisson") {
return(apply(exp(link) - yrep * link, 2, sum))
}
if (family == "binomial") {
return(apply(log(1 + exp(link)) - yrep * link, 2, sum))
}
}
repmat <- function(X, m, n) {
## R equivalent of repmat (matlab)
X <- as.matrix(X)
mx <- dim(X)[1]
nx <- dim(X)[2]
matrix(t(matrix(X, mx, nx * n)), mx * m, nx * n, byrow = T)
}
getdf <- function(coef.beta) {
apply(abs(coef.beta) > 1e-10, 2, sum)
}
margcoef <- function(x, y, condind = NULL, family, null.model = FALSE, iterind) {
n <- dim(x)[1]
p <- dim(x)[2]
ones <- rep(1, n)
candind <- setdiff(1:p, condind)
if (iterind == 0) {
if (family == "cox") {
margcoef <- abs(cor(x, y[, 1]))
} else if(family == 'multinom'){
margcoef <- sapply(candind, mg, x, y, ones, family, NULL)
} else {
margcoef <- abs(cor(x, y))
}
} else {
if (null.model == TRUE) {
if (is.null(condind) == TRUE) {
x <- x[sample(1:n), ]
}
if (is.null(condind) == FALSE) {
x[, candind] <- x[sample(1:n), candind]
}
}
margcoef <- sapply(candind, mg, x, y, ones, family, condind)
}
return(margcoef)
}
mg <- function(index, x = x, y = y, ones = ones, family = family, condind = condind) {
margfit <- -switch(family,
gaussian = glm.fit(cbind(ones, x[, index], x[, condind]), y, family = gaussian())$deviance,
binomial = glm.fit(cbind(ones, x[, index], x[, condind]), y, family = binomial())$deviance,
poisson = glm.fit(cbind(ones, x[, index], x[, condind]), y, family = poisson())$deviance,
cox = -coxph(y ~ cbind(x[, index], x[, condind]))$loglik[2],
multinom = multinom(y ~ cbind(x[, index], x[, condind]),trace = FALSE)$deviance
)
}
obtain.ix0 <- function(x, y, s1, s2, family, nsis, iter, varISIS, perm, q, greedy, greedy.size, iterind) {
ix0all <- NULL
if (iter == FALSE) {
margcoef <- margcoef(x, y, family = family, null.model = FALSE, iterind = iterind)
rankcoef <- sort(margcoef, decreasing = TRUE, index.return = TRUE)
ix0 <- rankcoef$ix[1:nsis]
ix0all <- rankcoef$ix
} else {
if (varISIS == "vanilla") {
margcoef <- margcoef(x, y, family = family, null.model = FALSE, iterind = iterind)
rankcoef <- sort(margcoef, decreasing = TRUE, index.return = TRUE)
ix0all <- rankcoef$ix
if (perm == FALSE) {
ix0 <- rankcoef$ix[1:floor((2 / 3) * nsis)]
} else {
count <- 0
repeat {
count <- count + 1
randcoef <- margcoef(x, y, family = family, null.model = TRUE, iterind = iterind)
if (length(which(margcoef >= quantile(randcoef, q))) > 0) {
break
}
if (count > 10) {
break
}
}
if (greedy == FALSE) {
if (length(which(margcoef >= quantile(randcoef, q))) >= 2) {
length1 <- length(which(margcoef >= quantile(randcoef, q)))
above.thresh <- rankcoef$ix[1:length1]
ix0 <- rankcoef$ix[1:floor((2 / 3) * nsis)]
ix0 <- sort(intersect(ix0, above.thresh))
} else {
ix0 <- rankcoef$ix[1:2]
}
} else {
if (greedy.size == 1) {
ix0 <- rankcoef$ix[1:2]
} else {
ix0 <- rankcoef$ix[1:greedy.size]
}
}
}
} else {
if (family == "cox") {
margcoef1 <- margcoef(x[s1, ], y[s1, ], family = family, null.model = FALSE, iterind = iterind)
margcoef2 <- margcoef(x[s2, ], y[s2, ], family = family, null.model = FALSE, iterind = iterind)
} else {
margcoef1 <- margcoef(x[s1, ], y[s1], family = family, null.model = FALSE, iterind = iterind)
margcoef2 <- margcoef(x[s2, ], y[s2], family = family, null.model = FALSE, iterind = iterind)
}
rankcoef1 <- sort(margcoef1, decreasing = TRUE, index.return = TRUE)
rankcoef2 <- sort(margcoef2, decreasing = TRUE, index.return = TRUE)
if (perm == FALSE) {
if (varISIS == "aggr") {
ix01 <- rankcoef1$ix[1:floor((2 / 3) * nsis)]
ix02 <- rankcoef2$ix[1:floor((2 / 3) * nsis)]
ix0 <- sort(intersect(ix01, ix02))
if (length(ix0) <= 1) {
ix0 <- int.size.k(rankcoef1$ix, rankcoef2$ix, 2)
}
}
if (varISIS == "cons") {
iensure <- intensure(floor((2 / 3) * nsis), l1 = rankcoef1$ix, l2 = rankcoef2$ix, k = floor((2 / 3) * nsis))
ix01 <- rankcoef1$ix[1:iensure]
ix02 <- rankcoef2$ix[1:iensure]
ix0 <- sort(intersect(ix01, ix02))
}
} else {
count <- 0
repeat {
count <- count + 1
randcoef1 <- margcoef(x[s1, ], y[s1], family = family, null.model = TRUE, iterind = iterind)
randcoef2 <- margcoef(x[s2, ], y[s2], family = family, null.model = TRUE, iterind = iterind)
if (length(which(margcoef1 >= quantile(randcoef1, q))) > 0 && length(which(margcoef2 >= quantile(
randcoef2,
q
))) > 0) {
break
}
if (count > 10) break
}
if (greedy == FALSE) {
length1 <- length(which(margcoef1 >= quantile(randcoef1, q)))
length2 <- length(which(margcoef2 >= quantile(randcoef2, q)))
above.thresh.1 <- rankcoef1$ix[1:length1]
above.thresh.2 <- rankcoef2$ix[1:length2]
ix01 <- rankcoef1$ix[1:floor((2 / 3) * nsis)]
ix02 <- rankcoef2$ix[1:floor((2 / 3) * nsis)]
ix01 <- sort(intersect(ix01, above.thresh.1))
ix02 <- sort(intersect(ix02, above.thresh.2))
ix0 <- sort(intersect(ix01, ix02))
if (length(ix0) <= 1) {
ix0 <- int.size.k(rankcoef1$ix, rankcoef2$ix, 2)
}
} else {
if (greedy.size == 1) {
ix0 <- int.size.k(rankcoef1$ix, rankcoef2$ix, 2)
} else {
ix0 <- int.size.k(rankcoef1$ix, rankcoef2$ix, greedy.size)
}
}
}
}
}
return(list(ix0 = ix0, ix0all = ix0all))
}
obtain.newix <- function(x, y, ix1, candind, s1, s2, family, pleft, varISIS, perm, q, greedy, greedy.size, iterind) {
newixall <- NULL
if (varISIS == "vanilla") {
margcoef <- margcoef(x, y, ix1, family = family, null.model = FALSE, iterind = iterind)
rankcoef <- sort(margcoef, decreasing = TRUE, index.return = TRUE)
newixall <- candind[rankcoef$ix]
if (perm == FALSE) {
if (pleft > 0) {
newix <- candind[rankcoef$ix[1:pleft]]
} else {
newix <- NULL
}
} else {
randcoef <- margcoef(x, y, ix1, family = family, null.model = TRUE, iterind = iterind)
if (length(which(margcoef >= quantile(randcoef, q))) > 0) {
if (greedy == FALSE) {
length1 <- length(which(margcoef >= quantile(randcoef, q)))
above.thresh <- candind[rankcoef$ix[1:length1]]
newix <- candind[rankcoef$ix[1:pleft]]
newix <- sort(intersect(newix, above.thresh))
} else {
newix <- candind[rankcoef$ix[1:greedy.size]]
}
} else {
newix <- NULL
}
}
} else {
margcoef1 <- margcoef(x[s1, ], y[s1], ix1, family = family, null.model = FALSE, iterind = iterind)
margcoef2 <- margcoef(x[s2, ], y[s2], ix1, family = family, null.model = FALSE, iterind = iterind)
rankcoef1 <- sort(margcoef1, decreasing = TRUE, index.return = TRUE)
rankcoef2 <- sort(margcoef2, decreasing = TRUE, index.return = TRUE)
if (perm == FALSE) {
if (pleft > 0) {
if (varISIS == "aggr") {
newix1 <- candind[rankcoef1$ix[1:pleft]]
newix2 <- candind[rankcoef2$ix[1:pleft]]
newix <- sort(intersect(newix1, newix2))
}
if (varISIS == "cons") {
iensure <- intensure(pleft, l1 = rankcoef1$ix, l2 = rankcoef2$ix, k = pleft)
newix1 <- candind[rankcoef1$ix[1:iensure]]
newix2 <- candind[rankcoef2$ix[1:iensure]]
newix <- sort(intersect(newix1, newix2))
}
} else {
newix <- NULL
}
} else {
randcoef1 <- margcoef(x[s1, ], y[s1], ix1, family = family, null.model = TRUE, iterind = iterind)
randcoef2 <- margcoef(x[s2, ], y[s2], ix1, family = family, null.model = TRUE, iterind = iterind)
if (length(which(margcoef1 >= quantile(randcoef1, q))) > 0 && length(which(margcoef2 >= quantile(randcoef2, q))) > 0) {
if (greedy == FALSE) {
length1 <- length(which(margcoef1 >= quantile(randcoef1, q)))
length2 <- length(which(margcoef2 >= quantile(randcoef2, q)))
above.thresh.1 <- candind[rankcoef1$ix[1:length1]]
above.thresh.2 <- candind[rankcoef2$ix[1:length2]]
newix1 <- candind[rankcoef1$ix[1:pleft]]
newix2 <- candind[rankcoef2$ix[1:pleft]]
newix1 <- sort(intersect(newix1, above.thresh.1))
newix2 <- sort(intersect(newix2, above.thresh.2))
newix <- sort(intersect(newix1, newix2))
} else {
length1 <- length(which(margcoef1 >= quantile(randcoef1, q)))
length2 <- length(which(margcoef2 >= quantile(randcoef2, q)))
newix1 <- candind[rankcoef1$ix[1:length1]]
newix2 <- candind[rankcoef2$ix[1:length2]]
iensure <- intensure(greedy.size, l1 = newix1, l2 = newix2, k = greedy.size)
if (is.null(iensure)) {
newix <- NULL
} else {
newix <- sort(intersect(newix1[1:iensure], newix2[1:iensure]))
}
}
} else {
newix <- NULL
}
}
}
return(list(newix = newix, newixall = newixall))
}
intensure <- function(i, l1, l2, k) {
for (j in i:length(l1)) {
if (length(intersect(l1[1:j], l2[1:j])) >= k) {
return(j)
}
}
# if (length(intersect(l1[1:i], l2[1:i])) >= k)
# return(i) else return(intensure(i + 1, l1, l2, k))
}
int.size.k <- function(l1, l2, k) {
iensure <- intensure(k, l1 = l1, l2 = l2, k = k)
ix01 <- l1[1:iensure]
ix02 <- l2[1:iensure]
ix0 <- sort(intersect(ix01, ix02))
return(ix0)
}
calculate.nsis <- function(family, varISIS, n, p) {
if (varISIS == "aggr") {
nsis <- floor(n / log(n))
} else {
if (family == "gaussian") {
nsis <- floor(n / log(n))
}
if (family == "binomial" | family == 'multinom') {
nsis <- floor(n / (4 * log(n)))
}
if (family == "poisson") {
nsis <- floor(n / (2 * log(n)))
}
if (family == "cox") {
nsis <- floor(n / (4 * log(n)))
}
}
if (p < n) {
nsis <- p
}
return(nsis)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.