direct_optimise: Maximum likelihood estimate for single frequency count table

Description Usage Arguments Examples

View source: R/penalty_single_sample_util.R

Description

Finds the MLE for a single frequency count table with the option of several search schemes and penalization choices.

Usage

1
2
3
4
direct_optimise(fct, penalty = NULL, lambda = NULL,
  search_scheme = "grid", multiplier = 10, c_seq_len = 100,
  starts = NULL, alpha_min = 1e-10, delta_min = 1e-10,
  alpha_max = 1e+05, delta_max = 1e+05, forced_ccc_lower_bound = NA)

Arguments

fct

a frequency count table, see make_frequency_count_table for more information.

penalty

method of penalizing/regularizing the maximum likelihood solution.

lambda

parameter for the h1 penalization method.

search_scheme

method for iterating over candidate C values.

multiplier

Richness values from the observed richness to multiplier*(observed richness) will be tested (default: 10).

c_seq_len

Number of candidate C values we will maximize over.

starts

A dataframe or matrix of optimization starts. See details.

alpha_min, delta_min, alpha_max, delta_max

box constraints for optimization over alpha and delta.

forced_ccc_lower_bound

allows the user to force a lower bound to the grid search for C.

Examples

1
2
3
4
5
6
direct_optimise(nb_fct_simulation(1000, 100, 0.95))

# Suppose we want something quicker:
direct_optimise(nb_fct_simulation(1000, 100, 0.95),
    search_scheme = "bisection",
    c_seq_len = 20)

statdivlab/rre documentation built on Nov. 5, 2019, 9:20 a.m.