## CAMP Adol analysis file
library(EpiModelHIV)
library(EpiModelHPC)
s1 <- merge_simfiles(1, indir = "~/Campcl/scenarios/data/")
s2 <- merge_simfiles(2, indir = "~/Campcl/scenarios/data/")
s3 <- merge_simfiles(3, indir = "~/Campcl/scenarios/data/")
s4 <- merge_simfiles(4, indir = "~/Campcl/scenarios/data/")
s5 <- merge_simfiles(5, indir = "~/Campcl/scenarios/data/")
#Base incidence.
incid.total.base.all<-rep(NA,100)
incid.total.base.msm<-rep(NA,100)
incid.total.base.asmm<-rep(NA,100)
for (i in 1:100){
incid.total.base.all[i]<-sum(s1$epi$incid[8261:8520,i])
incid.total.base.asmm[i]<-sum(s1$epi$incid.asmm[8261:8520,i])
incid.total.base.msm[i]<-incid.total.base.all[i] - incid.total.base.asmm[i]
}
incid.total.base.all<-mean(incid.total.base.all)
incid.total.base.msm<-mean(incid.total.base.msm)
incid.total.base.asmm<-mean(incid.total.base.asmm)
data<-c("s1","s2","s3","s4","s5")
coverage<-rep(NA,length(data))
#set up palceholders
##ALL
incid.total.all<-rep(NA,length(data))
incid.rate.all<-rep(NA,length(data))
incid.total.all.up95<-rep(NA,length(data))
incid.total.all.low95<-rep(NA,length(data))
prep.pt.all<-rep(NA,length(data))
prep.pt.all.up95<-rep(NA,length(data))
prep.pt.all.low95<-rep(NA,length(data))
person.time.all.deb<-rep(NA,length(data))
prev.pop.all<-rep(NA,length(data))
prev.pop.all.up95<-rep(NA,length(data))
prev.pop.all.low95<-rep(NA,length(data))
PIA.all<-rep(NA,length(data))
PIA.all.low95<-rep(NA,length(data))
PIA.all.up95<-rep(NA,length(data))
NIA.all<-rep(NA,length(data))
NIA.all.low95<-rep(NA,length(data))
NIA.all.up95<-rep(NA,length(data))
NNT.all<-rep(NA,length(data))
NNT.all.low95<-rep(NA,length(data))
NNT.all.up95<-rep(NA,length(data))
##MSM
incid.total.msm<-rep(NA,length(data))
incid.rate.msm<-rep(NA,length(data))
incid.total.msm.up95<-rep(NA,length(data))
incid.total.msm.low95<-rep(NA,length(data))
prep.pt.msm<-rep(NA,length(data))
prep.pt.msm.up95<-rep(NA,length(data))
prep.pt.msm.low95<-rep(NA,length(data))
person.time.msm.deb<-rep(NA,length(data))
prev.pop.msm<-rep(NA,length(data))
prev.pop.msm.up95<-rep(NA,length(data))
prev.pop.msm.low95<-rep(NA,length(data))
PIA.msm<-rep(NA,length(data))
PIA.msm.low95<-rep(NA,length(data))
PIA.msm.up95<-rep(NA,length(data))
NIA.msm<-rep(NA,length(data))
NIA.msm.low95<-rep(NA,length(data))
NIA.msm.up95<-rep(NA,length(data))
NNT.msm<-rep(NA,length(data))
NNT.msm.low95<-rep(NA,length(data))
NNT.msm.up95<-rep(NA,length(data))
##ASMM
incid.total.asmm<-rep(NA,length(data))
incid.rate.asmm<-rep(NA,length(data))
incid.total.asmm.up95<-rep(NA,length(data))
incid.total.asmm.low95<-rep(NA,length(data))
prep.pt.asmm<-rep(NA,length(data))
prep.pt.asmm.up95<-rep(NA,length(data))
prep.pt.asmm.low95<-rep(NA,length(data))
person.time.asmm.deb<-rep(NA,length(data))
prev.pop.asmm<-rep(NA,length(data))
prev.pop.asmm.up95<-rep(NA,length(data))
prev.pop.asmm.low95<-rep(NA,length(data))
PIA.asmm<-rep(NA,length(data))
PIA.asmm.low95<-rep(NA,length(data))
PIA.asmm.up95<-rep(NA,length(data))
NIA.asmm<-rep(NA,length(data))
NIA.asmm.low95<-rep(NA,length(data))
NIA.asmm.up95<-rep(NA,length(data))
NNT.asmm<-rep(NA,length(data))
NNT.asmm.low95<-rep(NA,length(data))
NNT.asmm.up95<-rep(NA,length(data))
##Cycyle through scenarios
for (i in 1:length(data)){
coverage<-rep(NA,100)
#All population
incid.total.all.temp<-rep(NA,100)
incid.total.all.up95.temp<-rep(NA,100)
incid.total.all.low95.temp<-rep(NA,100)
prep.pt.all.temp<-rep(NA,100)
prep.pt.all.up95.temp<-rep(NA,100)
prep.pt.all.low95.temp<-rep(NA,100)
person.time.all.deb.temp<-rep(NA,100)
prev.pop.all.temp<-rep(NA,100)
PIA.all.temp<-rep(NA,100)
NIA.all.temp<-rep(NA,100)
NNT.all.temp<-rep(NA,100)
#MSM
incid.total.msm.temp<-rep(NA,100)
incid.total.msm.up95.temp<-rep(NA,100)
incid.total.msm.low95.temp<-rep(NA,100)
prep.pt.msm.temp<-rep(NA,100)
prep.pt.msm.up95.temp<-rep(NA,100)
prep.pt.msm.low95.temp<-rep(NA,100)
person.time.msm.deb.temp<-rep(NA,100)
prev.pop.msm.temp<-rep(NA,100)
PIA.msm.temp<-rep(NA,100)
NIA.msm.temp<-rep(NA,100)
NNT.msm.temp<-rep(NA,100)
#ASMM
incid.total.asmm.temp<-rep(NA,100)
incid.total.asmm.up95.temp<-rep(NA,100)
incid.total.asmm.low95.temp<-rep(NA,100)
prep.pt.asmm.temp<-rep(NA,100)
prep.pt.asmm.up95.temp<-rep(NA,100)
prep.pt.asmm.low95.temp<-rep(NA,100)
person.time.asmm.deb.temp<-rep(NA,100)
prev.pop.asmm.temp<-rep(NA,100)
PIA.asmm.temp<-rep(NA,100)
NIA.asmm.temp<-rep(NA,100)
NNT.asmm.temp<-rep(NA,100)
## ALL Population
for (j in 1:100){
incid.total.all.temp[j]<-sum(get(data[i])$epi$incid[8261:8520,j])
prep.pt.all.temp[j]<-sum(get(data[i])$epi$prepCurr[8261:8520,j])
person.time.all.deb.temp[j]<-sum(get(data[i])$epi$debuted[8261:8520,j])
prev.pop.all.temp[j]<-get(data[i])$epi$i.prev[8520,j]
PIA.all.temp[j]<-(incid.total.base.all-incid.total.all.temp[j])/incid.total.base.all
NIA.all.temp[j]<-((incid.total.base.all-incid.total.all.temp[j])/person.time.all.deb.temp[j])*52*100000
NNT.all.temp[j]<-(prep.pt.all.temp[j]/52)/(incid.total.base.all-incid.total.all.temp[j])
}
## MSM Population
for (j in 1:100){
incid.total.msm.temp[j]<-sum(get(data[i])$epi$incid[8261:8520,j]) - sum(get(data[i])$epi$incid.asmm[8261:8520,j])
prep.pt.msm.temp[j]<-sum(get(data[i])$epi$prepCurr.msm[8261:8520,j])
person.time.msm.deb.temp[j]<-sum(get(data[i])$epi$num.msm[8261:8520,j])
prev.pop.msm.temp[j]<-get(data[i])$epi$i.prev.msm[8520,j]
PIA.msm.temp[j]<-(incid.total.base.msm-incid.total.msm.temp[j])/incid.total.base.msm
NIA.msm.temp[j]<-((incid.total.base.msm-incid.total.msm.temp[j])/person.time.msm.deb.temp[j])*52*100000
NNT.msm.temp[j]<-(prep.pt.msm.temp[j]/52)/(incid.total.base.msm-incid.total.msm.temp[j])
}
## ASMM Population
for (j in 1:100){
incid.total.asmm.temp[j]<-sum(get(data[i])$epi$incid[8261:8520,j])
prep.pt.asmm.temp[j]<-sum(get(data[i])$epi$prepCurr.asmm[8261:8520,j])
person.time.asmm.deb.temp[j]<-sum(get(data[i])$epi$debuted.asmm[8261:8520,j])
prev.pop.asmm.temp[j]<-get(data[i])$epi$i.prev.asmm[8520,j]
PIA.asmm.temp[j]<-(incid.total.base.asmm-incid.total.asmm.temp[j])/incid.total.base.asmm
NIA.asmm.temp[j]<-((incid.total.base.asmm-incid.total.asmm.temp[j])/person.time.asmm.deb.temp[j])*52*100000
NNT.asmm.temp[j]<-(prep.pt.asmm.temp[j]/52)/(incid.total.base.asmm-incid.total.asmm.temp[j])
}
coverage<-get(data[i])$param$prep.coverage
##ALL population
incid.total.all[i]<-mean(incid.total.all.temp)
incid.rate.all[i]<-mean(incid.total.all.temp)/260
incid.total.all.temp.ordered<-sort(incid.total.all.temp)
incid.total.all.up95[i]<-incid.total.all.temp.ordered[length(incid.total.all.temp.ordered)*.97]
incid.total.all.low95[i]<-incid.total.all.temp.ordered[length(incid.total.all.temp.ordered)*.03]
prep.pt.all[i]<-mean(prep.pt.all.temp)
prep.pt.all.temp.ordered<-sort(prep.pt.all.temp)
prep.pt.all.up95[i]<-prep.pt.all.temp.ordered[length(prep.pt.all.temp.ordered)*.97]
prep.pt.all.low95[i]<-prep.pt.all.temp.ordered[length(prep.pt.all.temp.ordered)*.03]
prev.pop.all[i]<-mean(prev.pop.all.temp)
prev.pop.all.temp.ordered<-sort(prev.pop.all.temp)
prev.pop.all.up95[i]<-prev.pop.all.temp.ordered[length(prev.pop.all.temp.ordered)*.97]
prev.pop.all.low95[i]<-prev.pop.all.temp.ordered[length(prev.pop.all.temp.ordered)*.03]
person.time.all.deb[i]<-mean(person.time.all.deb.temp)
if(i==1){
PIA.all[i] <- PIA.all.low95[i] <- PIA.all.up95[i] <- 0
NIA.all[i] <- NIA.all.low95[i] <- NIA.all.up95[i] <- 0
NNT.all[i] <- NNT.all.low95[i] <- NNT.all.up95[i] <- 0
}
if(i>1){
PIA.all[i]<-mean(PIA.all.temp)
PIA.all.temp<-sort(PIA.all.temp)
PIA.all.low95[i]<-PIA.all.temp[length(PIA.all.temp)*.03]
PIA.all.up95[i]<-PIA.all.temp[length(PIA.all.temp)*.97]
NIA.all[i]<-mean(NIA.all.temp)
NIA.all.temp<-sort(NIA.all.temp)
NIA.all.low95[i]<-NIA.all.temp[length(NIA.all.temp)*.03]
NIA.all.up95[i]<-NIA.all.temp[length(NIA.all.temp)*.97]
NNT.all[i]<-mean(NNT.all.temp)
NNT.all.temp<-sort(NNT.all.temp)
NNT.all.low95[i]<-NNT.all.temp[length(NNT.all.temp)*.03]
NNT.all.up95[i]<-NNT.all.temp[length(NNT.all.temp)*.97]
}
##MSM population
# incid.total.msm[i]<-mean(incid.total.msm.temp)
# incid.rate.msm[i]<-mean(incid.total.msm.temp)/260
# incid.total.msm.temp.ordered<-sort(incid.total.msm.temp)
# incid.total.msm.up95[i]<-incid.total.msm.temp.ordered[length(incid.total.msm.temp.ordered)*.97]
# incid.total.msm.low95[i]<-incid.total.msm.temp.ordered[length(incid.total.msm.temp.ordered)*.03]
# prep.pt.msm[i]<-mean(prep.pt.msm.temp)
# prep.pt.msm.temp.ordered<-sort(prep.pt.msm.temp)
# prep.pt.msm.up95[i]<-prep.pt.msm.temp.ordered[length(prep.pt.msm.temp.ordered)*.97]
# prep.pt.msm.low95[i]<-prep.pt.msm.temp.ordered[length(prep.pt.msm.temp.ordered)*.03]
# prev.pop.msm[i]<-mean(prev.pop.msm.temp)
# prev.pop.msm.temp.ordered<-sort(prev.pop.msm.temp)
# prev.pop.msm.up95[i]<-prev.pop.msm.temp.ordered[length(prev.pop.msm.temp.ordered)*.97]
# prev.pop.msm.low95[i]<-prev.pop.msm.temp.ordered[length(prev.pop.msm.temp.ordered)*.03]
# person.time.msm.deb[i]<-mean(person.time.msm.deb.temp)
# if(i==1){
# PIA.msm[i] <- PIA.msm.low95[i] <- PIA.msm.up95[i] <- 0
# NIA.msm[i] <- NIA.msm.low95[i] <- NIA.msm.up95[i] <- 0
# NNT.msm[i] <- NNT.msm.low95[i] <- NNT.msm.up95[i] <- 0
# }
# if(i>1){
# PIA.msm[i]<-mean(PIA.msm.temp)
# PIA.msm.temp<-sort(PIA.msm.temp)
# PIA.msm.low95[i]<-PIA.msm.temp[length(PIA.msm.temp)*.03]
# PIA.msm.up95[i]<-PIA.msm.temp[length(PIA.msm.temp)*.97]
# NIA.msm[i]<-mean(NIA.msm.temp)
# NIA.msm.temp<-sort(NIA.msm.temp)
# NIA.msm.low95[i]<-NIA.msm.temp[length(NIA.msm.temp)*.03]
# NIA.msm.up95[i]<-NIA.msm.temp[length(NIA.msm.temp)*.97]
# NNT.msm[i]<-mean(NNT.msm.temp)
# NNT.msm.temp<-sort(NNT.msm.temp)
# NNT.msm.low95[i]<-NNT.msm.temp[length(NNT.msm.temp)*.03]
# NNT.msm.up95[i]<-NNT.msm.temp[length(NNT.msm.temp)*.97]
# }
##ASMM population
# incid.total.asmm[i]<-mean(incid.total.asmm.temp)
# incid.rate.asmm[i]<-mean(incid.total.asmm.temp)/260
# incid.total.asmm.temp.ordered<-sort(incid.total.asmm.temp)
# incid.total.asmm.up95[i]<-incid.total.asmm.temp.ordered[length(incid.total.asmm.temp.ordered)*.97]
# incid.total.asmm.low95[i]<-incid.total.asmm.temp.ordered[length(incid.total.asmm.temp.ordered)*.03]
# prep.pt.asmm[i]<-mean(prep.pt.asmm.temp)
# prep.pt.asmm.temp.ordered<-sort(prep.pt.asmm.temp)
# prep.pt.asmm.up95[i]<-prep.pt.asmm.temp.ordered[length(prep.pt.asmm.temp.ordered)*.97]
# prep.pt.asmm.low95[i]<-prep.pt.asmm.temp.ordered[length(prep.pt.asmm.temp.ordered)*.03]
# prev.pop.asmm[i]<-mean(prev.pop.asmm.temp)
# prev.pop.asmm.temp.ordered<-sort(prev.pop.asmm.temp)
# prev.pop.asmm.up95[i]<-prev.pop.asmm.temp.ordered[length(prev.pop.asmm.temp.ordered)*.97]
# prev.pop.asmm.low95[i]<-prev.pop.asmm.temp.ordered[length(prev.pop.asmm.temp.ordered)*.03]
# person.time.asmm.deb[i]<-mean(person.time.asmm.deb.temp)
# if(i == 1){
# PIA.asmm[i] <- PIA.asmm.low95[i] <- PIA.asmm.up95[i] <- 0
# NIA.asmm[i] <- NIA.asmm.low95[i] <- NIA.asmm.up95[i] <- 0
# NNT.asmm[i] <- NNT.asmm.low95[i] <- NNT.asmm.up95[i] <- 0
# }
# if (i > 1){
# PIA.asmm[i]<-mean(PIA.asmm.temp)
# PIA.asmm.temp<-sort(PIA.asmm.temp)
# PIA.asmm.low95[i]<-PIA.asmm.temp[length(PIA.asmm.temp)*.03]
# PIA.asmm.up95[i]<-PIA.asmm.temp[length(PIA.asmm.temp)*.97]
# NIA.asmm[i]<-mean(NIA.asmm.temp)
# NIA.asmm.temp<-sort(NIA.asmm.temp)
# NIA.asmm.low95[i]<-NIA.asmm.temp[length(NIA.asmm.temp)*.03]
# NIA.asmm.up95[i]<-NIA.asmm.temp[length(NIA.asmm.temp)*.97]
# if(i==2){NNT.asmm[i] <- NNT.asmm.low95[i] <- NNT.asmm.up95[i] <- 0}
# if(i > 2){
# NNT.asmm[i]<-mean(NNT.asmm.temp)
# NNT.asmm.temp<-sort(NNT.asmm.temp)
# NNT.asmm.low95[i]<-NNT.asmm.temp[length(NNT.asmm.temp)*.03]
# NNT.asmm.up95[i]<-NNT.asmm.temp[length(NNT.asmm.temp)*.97]
# }
# }
}
#campcl_NIA_PIA_NNT_table<-cbind(PIA.all, PIA.all.low95, PIA.all.up95, NIA.all, NIA.all.low95, NIA.all.up95,
# NNT.all, NNT.all.low95, NNT.all.up95,
# PIA.msm, PIA.msm.low95, PIA.msm.up95, NIA.msm, NIA.msm.low95, NIA.msm.up95,
# NNT.msm, NNT.msm.low95, NNT.msm.up95,
# PIA.asmm, PIA.asmm.low95, PIA.asmm.up95, NIA.asmm, NIA.asmm.low95, NIA.asmm.up95,
# NNT.asmm, NNT.asmm.low95, NNT.asmm.up95,
# data)
#campcl_NIA_PIA_NNT_table
campcl_NIA_PIA_NNT_table<-cbind(PIA.all, PIA.all.low95, PIA.all.up95, NIA.all, NIA.all.low95, NIA.all.up95,
NNT.all, NNT.all.low95, NNT.all.up95,
data)
campcl_NIA_PIA_NNT_table
library(rJava)
library(xlsx) #load the package
write.xlsx(x = campcl_NIA_PIA_NNT_table, file = "/homes/dth2/Campcl/scenarios/out/campcl_NIA_PIA_NNT_table.xlsx",
sheetName = "Epidemic results", row.names = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.