ebpmf: Empirical Bayes Poisson Matrix Factorization

Description Usage Arguments Value Examples

View source: R/ebpmf.R

Description

Empirical Bayes Poisson Matrix Factorization

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
ebpmf(
  X,
  K,
  pm_func = ebpm::ebpm_point_gamma,
  init = list(qg = NULL, init_method = "scd", init_iter = 20),
  pm_control = NULL,
  fix_option = list(gl = FALSE, ql = FALSE, gf = FALSE, qf = FALSE),
  maxiter = 100,
  tol = 1e-08,
  verbose = FALSE
)

Arguments

X

count matrix (dim(X) = c(n, p)).

pm_func

function for solving the ebpm subproblem; can be ebpm_point_gamma, ebpm_two_gamma, ebpm_exponential_mixture, ebpm_gamma_mixture_single_scale

init

list(qg, init_method, init_iter)

pm_control

control parameters for pm_func function

maxiter

maximum number of iterations

tol

stopping tolerance for ELBO

verbose

print progress if set TRUE

k

number of topics

fix_g

list(l, f) where l, f are either TRUE or FALSE

Value

A list containing elements:

ql

approximate posterior for l

gl

fitted g for l

kl_l

kl divergence between q and g for l

qf

approximate posterior for f

gf

fitted g for f

kl_f

kl divergence between q and g for f

Examples

1
To add

stephenslab/ebpmf.alpha documentation built on Nov. 20, 2021, 11:57 a.m.