ebpmf_wbg2_subject: Empirical Bayes Poisson Matrix Factorization (Background...

Description Usage Arguments Value Examples

View source: R/ebpmf_wbg2_subject.R

Description

Empirical Bayes Poisson Matrix Factorization (Background Model with weights, using subject information)

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
ebpmf_wbg2_subject(
  X,
  u,
  K,
  pm_func = list(f = ebpm::ebpm_gamma_mixture, l = ebpm::ebpm_gamma, m =
    ebpm::ebpm_gamma),
  init = NULL,
  pm_control = NULL,
  fix_option = list(m = FALSE, gl = FALSE, ql = FALSE, gf = FALSE, qf = FALSE),
  maxiter = 100,
  tol = 1e-08,
  verbose = FALSE,
  seed = 123
)

Arguments

X

count matrix (dim(X) = c(n, p)).

u

vector encoding subject (length(u) = n; elements need to be from 1,..., length(unique(u))).

pm_func

functions for solving the ebpm subproblem for L and F; It is a list list(l, f, m);

init

Either NULL or list(qg, m, w)

pm_control

control parameters for pm_func function

fix_option

list(m, gl, ql, gf, qf) where each is either TRUE or FALSE

maxiter

maximum number of iterations

tol

stopping tolerance for ELBO

seed

used when init is NULL

k

number of topics

Value

A list containing elements:

m

list of "mean" and "mean_log", "g", "kl"; "mean" and "mean_log" are each a p by D background frequency matrix

qg

list(ql, gl,qf, gf)

ELBO

ELBO objective for this VEB algorithm

Examples

1
To add

stephenslab/ebpmf.alpha documentation built on Nov. 20, 2021, 11:57 a.m.