np_ebpmf_wbg: Nonparametric Empirical Bayes Poisson Matrix Factorization...

Description Usage Arguments Value Examples

View source: R/np_ebpmf_wbg.R

Description

Nonparametric Empirical Bayes Poisson Matrix Factorization (Background Model with weights)

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
np_ebpmf_wbg(
  X,
  K,
  alpha = 1,
  pm_func = list(f = ebpm::ebpm_gamma_mixture, l = ebpm::ebpm_gamma_mixture),
  init = NULL,
  pm_control = NULL,
  fix_option = list(l0 = FALSE, f0 = FALSE, gl = FALSE, ql = FALSE, gf = FALSE, qf =
    FALSE),
  maxiter = 100,
  tol = 1e-08,
  verbose = FALSE,
  seed = 123
)

Arguments

X

count matrix (dim(X) = c(n, p)).

pm_func

functions for solving the ebpm subproblem for L and F; It is a list list(l, f); For our purpose we use 'mle_pm' or 'ebpm_point_gammma'for L, and ebpm_gamma_mixture for F

init

Either NULL or list(qg, l0, f0, w)

pm_control

control parameters for pm_func function

maxiter

maximum number of iterations

tol

stopping tolerance for ELBO

seed

used when init is NULL

k

number of topics

fix_g

list(l, f) where l, f are either TRUE or FALSE

Value

A list containing elements:

l0

sample-wise mean

f0

feature-wise mean

qg

list(ql, gl,qf, gf)

ELBO

ELBO objective for this VEB algorithm

Examples

1
To add

stephenslab/ebpmf.alpha documentation built on Nov. 20, 2021, 11:57 a.m.