#' @title Poisson Matrix Factorization with background
#' @param X count matrix (dim(X) = c(n, p)).
#' @param K number of topics
#' @param init Either NULL or \code{list(l0, f0, L, F)}
#' @param maxiter
#' @param verbose
#' @param seed only used when init is NULL
#' @return \code{list(l0, f0, L, F, log_liks)}
#' @export pmf_bg
pmf_bg <- function(X, K, init, fix_option,
maxiter = 100, verbose = FALSE, seed = 123){
X <- as(X, "sparseMatrix")
X_rs = Matrix::rowSums(X)
X_cs = Matrix::colSums(X)
d = summary(X)
const = sum(apply.nonzeros(X = X, f = function(x) lgamma(x + 1)))
init_tmp = init_pmf_bg(X = X, K = K, init = init, d= d, seed = seed)
l0 = init_tmp$l0
f0 = init_tmp$f0
L = init_tmp$L
F = init_tmp$F
b = init_tmp$b
a = init_tmp$a
rm(init_tmp)
log_liks = c()
for(i in 1:maxiter){
b_k_max = replicate(length(d$x), 0) ## max b_k
for(k in 1:K){
## compute Ez
b_k = log(L[d$i,k]) + log(F[d$j,k]) - a
Ez <- compute_EZ(d = d, b = b, b_k = b_k)
## rank-1 update
if(!fix_option$L){
L[,k] = Ez$rs/(l0 * sum(f0 * F[,k]))
}
if(!fix_option$F){
F[,k] = Ez$cs/(f0 * sum(l0 * L[,k]))
}
rm(Ez)
## update B
b_k0 = b_k
b_k = log(L[d$i,k]) + log(F[d$j,k]) - a
b = log( exp(b) - exp(b_k0) + exp(b_k) )
b_k_max = pmax(b_k, b_k_max)
if(!fix_option$l0){
denom <- colSums(t(L) * colSums(f0 * F))
l0 <- X_rs/denom
}
if(!fix_option$f0){
denom <- colSums(t(F) * colSums(l0 * L))
f0 <- X_cs/denom
}
}
## compute loglikelihood
ll = - sum(colSums(l0 * L)*colSums(f0 * F)) + sum(d$x * (log(l0[d$i]) + log(f0[d$j]) + b + a)) - const
log_liks = c(log_liks, ll)
## verbose
if(verbose){
print("iter loglik")
print(sprintf("%d: %f", i, ll))
}
}
return(list(l0 = l0, f0 = f0, L = L, F = F, log_liks = log_liks))
}
init_pmf_bg <- function(X, K, init, d, seed = 123){
n = nrow(X)
p = ncol(X)
if(is.null(init)){
set.seed(seed)
l0 = Matrix::rowMeans(X)
f0 = Matrix::colMeans(X)
l0 = l0 * (sum(X)/sum(f0)/K) / sum(l0)
L <- matrix(2 * runif(n*K), ncol = K)
F <- matrix(2 * runif(p*K), ncol = K)
}else{
l0 <- init$l0
f0 <- init$f0
L <- init$L
F <- init$F
}
## compute `a`
a = replicate(length(d$x), 0)
for(k in 1:K){
b_k_tmp <- log(L[d$i,k]) + log(F[d$j,k])
a <- pmax(a, b_k_tmp)
}
## compute b
b = log(L[d$i,1]) + log(F[d$j,1]) - a
for(k in 2:K){
b_k = log(L[d$i,k]) + log(F[d$j,k]) - a
b <- log( exp(b) + exp(b_k) )
}
return(list(l0 = l0, f0 = f0, L = L, F = F, b = b, a = a))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.