context("Test computation of the rank of the variables according to logBF")
test_that("R and Rcpp version of compute_rank_variables_BFmix return the same results", {
###Set seed
set.seed(123)
###Simulate X and Y
n <- 100
p <- 10
###Set residual covariance
V <- rbind(c(1.0,0.2),
c(0.2,0.4))
###Set true effects
B <- matrix(c(-2, -2,
5, 5,
rep(0, (p-2)*2)), byrow=TRUE, ncol=2)
###Simulate X
X <- matrix(rnorm(n*p), nrow=n, ncol=p)
X <- scale(X, center=TRUE, scale=FALSE)
###Simulate Y from MN(XB, I_n, V) where I_n is an nxn identity matrix and V is the residual covariance
Y <- sim_mvr(X, B, V)
###Specify the mixture weights and covariance matrices for the mixture-of-normals prior
grid <- seq(1, 5)
S0mix <- compute_cov_canonical(ncol(Y), singletons=TRUE, hetgrid=c(0, 0.25, 0.5, 0.75, 0.99), grid, zeromat=TRUE)
S0mix <- lapply(S0mix, makePD, e=1e-8)
w0 <- rep(1/(length(S0mix)), length(S0mix))
###Compute the inverse of V
Vinv <- solve(V)
###Compute quantities needed for rss version
XtY <- crossprod(X, scale(Y, center=TRUE, scale=FALSE))
###Set eps
eps <- .Machine$double.eps
###Compute logbf with standardize=TRUE
comps_r <- precompute_quants(n, V, S0mix, standardize=TRUE, version="R")
ranks_r <- compute_rank_variables_BFmix(X, Y, V, Vinv, w0, S0mix, comps_r, standardize=TRUE, version="R", decreasing=TRUE, eps)
comps_rcpp <- precompute_quants(n, V, S0mix, standardize=TRUE, version="Rcpp")
ranks_rcpp <- compute_rank_variables_BFmix(X, Y, V, Vinv, w0, S0mix, comps_rcpp, standardize=TRUE, version="Rcpp", decreasing=TRUE, eps, nthreads=1)
ranks_rss_r <- compute_rank_variables_BFmix_rss(n, XtY, V, Vinv, w0, S0mix, comps_r, standardize=TRUE, version="R", decreasing=TRUE, eps)
ranks_rss_rcpp <- compute_rank_variables_BFmix_rss(n, XtY, V, Vinv, w0, S0mix, comps_rcpp, standardize=TRUE, version="Rcpp", decreasing=TRUE, eps, nthreads=1)
###Compute logbf with standardize=FALSE
comps1_r <- precompute_quants(n, V, S0mix, standardize=FALSE, version="R")
comps1_r$xtx <- colSums(X^2)
ranks1_r <- compute_rank_variables_BFmix(X, Y, V, Vinv, w0, S0mix, comps1_r, standardize=FALSE, version="R", decreasing=TRUE, eps)
comps1_rcpp <- precompute_quants(n, V, S0mix, standardize=FALSE, version="Rcpp")
comps1_rcpp$xtx <- colSums(X^2)
ranks1_rcpp <- compute_rank_variables_BFmix(X, Y, V, Vinv, w0, S0mix, comps1_rcpp, standardize=FALSE, version="Rcpp", decreasing=TRUE, eps, nthreads=1)
ranks1_rss_r <- compute_rank_variables_BFmix_rss(n, XtY, V, Vinv, w0, S0mix, comps1_r, standardize=FALSE, version="R", decreasing=TRUE, eps)
ranks1_rss_rcpp <- compute_rank_variables_BFmix_rss(n, XtY, V, Vinv, w0, S0mix, comps1_rcpp, standardize=FALSE, version="Rcpp", decreasing=TRUE, eps, nthreads=1)
###Tests
expect_equal(ranks_r, ranks_rcpp, tolerance = 1e-10, scale = 1)
expect_equal(ranks1_r, ranks1_rcpp, tolerance = 1e-10, scale = 1)
expect_equal(ranks_rss_r, ranks_rss_rcpp, tolerance = 1e-10, scale = 1)
expect_equal(ranks1_rss_r, ranks1_rss_rcpp, tolerance = 1e-10, scale = 1)
expect_equal(ranks_rss_rcpp, ranks_rcpp, tolerance = 1e-10, scale = 1)
expect_equal(ranks1_rss_rcpp, ranks1_rcpp, tolerance = 1e-10, scale = 1)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.