#' General interface for automl models
#'
#' @param mode A single character string for the type of model.
#'
#' @return A model_spec
#' @export
automl <- function(mode = "classification") {
args <- list()
parsnip::new_model_spec(
"automl",
args = args,
eng_args = NULL,
mode = mode,
method = NULL,
engine = "h2o"
)
}
#' @export
print.automl <- function(x, ...) {
cat("Automl Model Specification (", x$mode, ")\n\n", sep = "")
parsnip::model_printer(x, ...)
if (!is.null(x$method$fit$args)) {
cat("Model fit template:\n")
print(parsnip::show_call(x))
}
invisible(x)
}
add_automl <- function() {
# define model
parsnip::set_new_model("automl")
# define model modes
parsnip::set_model_mode(model = "automl", mode = "classification")
parsnip::set_model_engine("automl", mode = "classification", eng = "h2o")
parsnip::set_model_mode(model = "automl", mode = "regression")
parsnip::set_model_engine("automl", mode = "regression", eng = "h2o")
# define dependencies for each mode
parsnip::set_dependency("automl", "h2o", "h2o")
# define fit methods
parsnip::set_fit(
model = "automl",
eng = "h2o",
mode = "regression",
value = list(
interface = "formula",
protect = c("formula", "x", "y", "training_frame"),
func = c(fun = "h2o_automl_train"),
defaults = list()
)
)
parsnip::set_fit(
model = "automl",
eng = "h2o",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "x", "y", "training_frame"),
func = c(fun = "h2o_automl_train"),
defaults = list()
)
)
parsnip::set_encoding(
model = "automl",
eng = "h2o",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_encoding(
model = "automl",
eng = "h2o",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
# regression predict
parsnip::set_pred(
model = "automl",
eng = "h2o",
mode = "regression",
type = "numeric",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x)$predict,
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "automl",
eng = "h2o",
mode = "regression",
type = "raw",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x),
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
# classification predict
parsnip::set_pred(
model = "automl",
eng = "h2o",
mode = "classification",
type = "class",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x)$predict,
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "automl",
eng = "h2o",
mode = "classification",
type = "prob",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x[, 2:ncol(x)]),
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "automl",
eng = "h2o",
mode = "classification",
type = "raw",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x),
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
}
#' Wrapper for training a h2o.automl model
#'
#' @param formula formula
#' @param data data.frame of training data
#' @param ... Other arguments to pass the h2o.automl
#'
#' @return evaluated h2o model call
#' @export
h2o_automl_train <- function(formula, data, ...) {
others <- list(...)
# get term names
X <- attr(stats::terms(formula, data = data), "term.labels")
y <- all.vars(formula)[1]
# convert to H2OFrame (although parsnip doesn't support H2OFrames right now)
if (!inherits(data, "H2OFrame")) {
data <- h2o::as.h2o(data)
}
# define arguments
args <- list(
x = X,
y = y,
training_frame = data
)
others <- list(...)
res <- make_h2o_call("h2o.automl", args, others)
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.