add_naive_Bayes_h2o <- function() {
parsnip::set_model_engine("naive_Bayes", "classification", "h2o")
parsnip::set_dependency("naive_Bayes", "h2o", "h2o")
parsnip::set_model_arg(
model = "naive_Bayes",
eng = "h2o",
parsnip = "Laplace",
original = "laplace",
func = list(pkg = "dials", fun = "Laplace"),
has_submodel = FALSE
)
# fit
parsnip::set_fit(
model = "naive_Bayes",
eng = "h2o",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "x", "y", "training_frame"),
func = c(fun = "h2o_naiveBayes_train"),
defaults = list()
)
)
parsnip::set_encoding(
model = "naive_Bayes",
eng = "h2o",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
# classification predict
parsnip::set_pred(
model = "naive_Bayes",
eng = "h2o",
mode = "classification",
type = "class",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x)$predict,
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "naive_Bayes",
eng = "h2o",
mode = "classification",
type = "prob",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x[, 2:ncol(x)]),
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "naive_Bayes",
eng = "h2o",
mode = "classification",
type = "raw",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x),
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
}
#' Wrapper for training a h2o.naiveBayes model as part of a discrim `naive_Bayes`
#' h2o engine
#'
#' @param formula formula
#' @param data data.frame of training data
#' @param laplace numeric, the Laplace smoothing parameter, must be >= 0.
#' @param ... other arguments passed to the h2o engine.
#'
#' @return a fitted h2o model.
#' @export
h2o_naiveBayes_train <-
function(formula,
data,
laplace = 0,
...) {
others <- list(...)
# get term names and convert to h2o
X <- attr(stats::terms(formula, data = data), "term.labels")
y <- all.vars(formula)[1]
# convert to H2OFrame (although parsnip doesn't support H2OFrames right now)
if (!inherits(data, "H2OFrame")) {
data <- h2o::as.h2o(data)
}
# check arguments
if (laplace < 0) {
laplace <- 0
}
# define arguments
args <- list(
x = X,
y = y,
training_frame = data,
laplace = laplace
)
res <- make_h2o_call("h2o.naiveBayes", args, others)
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.