add_rule_fit_h2o <- function() {
parsnip::set_model_engine("rule_fit", "classification", "h2o")
parsnip::set_model_engine("rule_fit", "regression", "h2o")
parsnip::set_dependency("rule_fit", "h2o", "h2o")
parsnip::set_model_arg(
model = "rule_fit",
eng = "h2o",
parsnip = "trees",
original = "rule_generation_ntrees",
func = list(pkg = "dials", fun = "trees"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "rule_fit",
eng = "h2o",
parsnip = "tree_depth",
original = "max_rule_length",
func = list(pkg = "dials", fun = "tree_depth"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "rule_fit",
eng = "h2o",
parsnip = "penalty",
original = "lambda",
func = list(pkg = "dials", fun = "penalty"),
has_submodel = FALSE
)
parsnip::set_fit(
model = "rule_fit",
eng = "h2o",
mode = "regression",
value = list(
interface = "formula",
protect = c("formula", "x", "y", "training_frame"),
func = c(fun = "h2o_rulefit_train"),
defaults = list()
)
)
parsnip::set_fit(
model = "rule_fit",
eng = "h2o",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "x", "y", "training_frame"),
func = c(fun = "h2o_rulefit_train"),
defaults = list()
)
)
parsnip::set_encoding(
model = "rule_fit",
eng = "h2o",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_encoding(
model = "rule_fit",
eng = "h2o",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
# regression predict
parsnip::set_pred(
model = "rule_fit",
eng = "h2o",
mode = "regression",
type = "numeric",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x)$predict,
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "rule_fit",
eng = "h2o",
mode = "regression",
type = "raw",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x),
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
# classification predict
parsnip::set_pred(
model = "rule_fit",
eng = "h2o",
mode = "classification",
type = "class",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x)$predict,
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "rule_fit",
eng = "h2o",
mode = "classification",
type = "prob",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x[, 2:ncol(x)]),
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "rule_fit",
eng = "h2o",
mode = "classification",
type = "raw",
value = list(
pre = function(x, object) h2o::as.h2o(x),
post = function(x, object) as.data.frame(x),
func = c(pkg = "h2o", fun = "h2o.predict"),
args = list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
}
#' Wrapper for training a h2o.rulefit model as part of a parsnip
#' `rule_fit` h2o engine
#'
#' @param formula formula
#' @param data data.frame of training data
#' @param rule_generation_ntrees integer, the number of trees to build (default
#' = 50)
#' @param max_rule_length integer, the maximum tree depth (default = 3).
#' @param lambda Specify the regularization strength for LASSO regressor.
#' @param ... other arguments that are passed to the h2o model
#'
#' @return evaluated h2o model call
#' @export
h2o_rulefit_train <-
function(formula,
data,
rule_generation_ntrees = 50,
max_rule_length = 3,
lambda = 0,
...) {
others <- list(...)
# get term names and convert to h2o
X <- attr(stats::terms(formula, data = data), "term.labels")
y <- all.vars(formula)[1]
# convert to H2OFrame (although parsnip doesn't support H2OFrames right now)
if (!inherits(data, "H2OFrame")) {
data <- h2o::as.h2o(data)
}
# define arguments
args <- list(
x = X,
y = y,
training_frame = data,
rule_generation_ntrees = rule_generation_ntrees,
max_rule_length = max_rule_length,
lambda = lambda
)
res <- make_h2o_call("h2o.rulefit", args, others)
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.