#' Incomplete elliptic integral of the third kind
#' @description Evaluate the incomplete elliptic integral of the third kind.
#'
#' @param phi amplitude, real or complex number/vector
#' @param n characteristic, real or complex number/vector
#' @param m parameter, real or complex number/vector
#' @param minerror the bound on the relative error passed to
#' \code{\link{Carlson_RF}} and \code{\link{Carlson_RJ}}
#'
#' @return A complex number or vector, the value(s) of the incomplete elliptic
#' integral
#' \ifelse{html}{\out{Π(φ,n,m)}}{\eqn{\Pi(\phi,n,m)}{PI(phi,n,m)}}.
#' @export
#'
#' @examples elliptic_PI(1, 0.8, 0.2)
#' gsl::ellint_P(1, sqrt(0.2), -0.8)
elliptic_PI <- function(phi, n, m, minerror = 1e-15) {
phi <- as.complex(phi)
n <- as.complex(n)
m <- as.complex(m)
lgths <- c(length(phi), length(n), length(m))
L <- max(lgths)
if(!all(lgths %in% c(1L, L))) {
stop("Incompatible lengths of the arguments.")
}
if(L != 1L && any(lgths == 1L)) {
if(length(phi) == 1L) {
phi <- rep(phi, L)
}
if(length(n) == 1L) {
n <- rep(n, L)
}
if(length(m) == 1L) {
m <- rep(m, L)
}
}
ellPIcpp(phi, n, m, minerror)
# if(phi == 0 || (is.infinite(Re(m)) && Im(m) == 0) ||
# (is.infinite(Re(n)) && Im(n) == 0)){
# as.complex(0)
# }else if(phi == pi/2 && m == 1 && Im(n) == 0 && n != 1){
# ifelse(Re(n) > 1, -Inf, Inf)
# }else if(phi == pi/2 && n == 1){
# NaN
# }else if(phi == pi/2 && m == 0){
# pi/2/sqrt(as.complex(1-n))
# }else if(phi == pi/2 && n == m){
# elliptic_E(pi/2, m, minerror) / (1-m)
# }else if(phi == pi/2 && n == 0){
# elliptic_F(pi/2, m, minerror)
# }else if(Re(phi) >= -pi/2 && Re(phi) <= pi/2){
# sine <- sin(phi)
# if(is.infinite(Re(sine)) || is.infinite(Im(sine))){
# stop("`sin(phi)` is not finite.")
# }
# sine2 <- sine*sine
# cosine2 <- 1 - sine2
# oneminusmsine2 <- 1 - m*sine2
# sine * (Carlson_RF(cosine2, oneminusmsine2, 1, minerror) +
# n * sine2 * Carlson_RJ(cosine2, oneminusmsine2, 1, 1-n*sine2,
# minerror) / 3)
# }else if(Re(phi) > pi/2){
# k <- ceiling(Re(phi)/pi - 0.5)
# phi <- phi - k*pi
# 2*k*elliptic_PI(pi/2, n, m, minerror) + elliptic_PI(phi, n, m, minerror)
# }else{
# k <- -floor(0.5 - Re(phi)/pi)
# phi <- phi - k*pi
# 2*k*elliptic_PI(pi/2, n, m, minerror) + elliptic_PI(phi, n, m, minerror)
# }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.