context("test-mupp_d2probs_2D.R")
test_that("mupp probability second derivatives work: two dimensions", {
set.seed(23453)
# 0 # Misc Objects
dims <- 1:2
n_dims <- length(dims)
# 0 # R functions to calculate probs
# - GGUM
p_ggum <- function(theta, alpha, delta, tau){
e1 <- exp(alpha * ((theta - delta) - tau))
e2 <- exp(alpha * (2 * (theta - delta) - tau))
e3 <- exp(alpha * (3 * (theta - delta)))
(e1 + e2) / (1 + e1 + e2 + e3)
} # END p_ggum FUNCTION
# - MUPP (for 2D only) (intentionally manual and hard coded)
p_mupp <- function(thetas, params){
p_s <- p_ggum(thetas[ , 1], params[1, 1], params[1, 2], params[1, 3])
p_t <- p_ggum(thetas[ , 2], params[2, 1], params[2, 2], params[2, 3])
p <- p_s * (1 - p_t) / (p_s * (1 - p_t) + p_t * (1 - p_s))
P <- "dimnames<-"(cbind(p, 1 - p), NULL)
P
} # END p_mupp (2D) FUNCTION
# 0 # R functions to calculate derivatives
pder1_ggum <- function(theta, alpha, delta, tau){
e1 <- exp(alpha * ((theta - delta) - tau))
e2 <- exp(alpha * (2 * (theta - delta) - tau))
e3 <- exp(alpha * (3 * (theta - delta)))
alpha * (e1 * (1 - 2 * e3) + e2 * (2 - e3)) / (1 + e1 + e2 + e3)^2
}
# 0 # R functions to calculate second derivatives
pder2_ggum <- function(theta, alpha, delta, tau){
e1 <- exp(alpha * ((theta - delta) - tau))
e2 <- exp(alpha * (2 * (theta - delta) - tau))
e3 <- exp(alpha * (3 * (theta - delta)))
A <- alpha * (e1 * (1 - 2 * e3) + e2 * (2 - e3))
dA <- alpha^2 * (e1 * (1 - 8 * e3) + e2 * (4 - 5 * e3))
B <- (1 + e1 + e2 + e3) ^ 2
dB <- 2 * alpha * (1 + e1 + e2 + e3) * (e1 + 2 * e2 + 3 * e3)
(B * dA - A * dB) / (B ^ 2)
} # END pder2_ggum FUNCTION
# - MUPP (for 2D only) (intentionally manual and hard coded and NOT simplified)
# (same as in paper, even though paper could be simplified more)
pder2_mupp <- function(thetas, params){
A <- p_ggum(thetas[ , 1], params[1, 1], params[1, 2], params[1, 3])
B <- 1 - p_ggum(thetas[ , 2], params[2, 1], params[2, 2], params[2, 3])
C <- 1 - A
D <- 1 - B
Ap <- pder1_ggum(thetas[ , 1], params[1, 1], params[1, 2], params[1, 3])
Bp <- -pder1_ggum(thetas[ , 2], params[2, 1], params[2, 2], params[2, 3])
A2p <- pder2_ggum(thetas[ , 1], params[1, 1], params[1, 2], params[1, 3])
B2p <- -pder2_ggum(thetas[ , 2], params[2, 1], params[2, 2], params[2, 3])
d1 <- B * (1 - B) * (A2p * (A * B + C * D) - 2 * Ap^2 * (2 * B - 1)) / (A * B + C * D)^3
d2 <- A * (1 - A) * (B2p * (A * B + C * D) - 2 * Bp^2 * (2 * A - 1)) / (A * B + C * D)^3
d12 <- Ap * Bp * (1 - A - B) / (A * B + C * D)^3
dP <- "dimnames<-"(cbind(d1, d2, d12), NULL)
dP
} # END pder2_mupp FUNCTION
# 0 # R function to put second derivatives in correct order
pder2_mupp_all <- function(thetas, params){
d1 <- pder2_mupp(thetas, params)
d2 <- pder2_mupp(thetas[ , 2:1, drop = FALSE],
params[2:1, , drop = FALSE])[ , c(2:1, 3), drop = FALSE]
dP <- "dimnames<-"(list(d1, d2), NULL)
dP
}
# 0 # Misc Functions
convert_hessian <- function(mat){
rbind(c(diag(mat), mat[lower.tri(mat, diag = FALSE)]))
}
# b # change theta but keep items the same
thetas <- rbind(c(0, -1))
alphas <- c(1, 1)
deltas <- c(0, 0)
taus <- c(0, 0)
params <- cbind(alphas, deltas, taus)
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
pder2_mupp_all(thetas, params))
# c # change alpha but keep items the same
thetas <- rbind(c(0, 0))
alphas <- c(1, 2)
params <- cbind(alphas, deltas, taus)
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
pder2_mupp_all(thetas, params))
# d # change delta but keep items the same
alphas <- c(1, 1)
deltas <- c(0, -1)
params <- cbind(alphas, deltas, taus)
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
pder2_mupp_all(thetas, params))
# d # change taus but keep items the same
deltas <- c(0, 0)
taus <- c(0, -1)
params <- cbind(alphas, deltas, taus)
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
pder2_mupp_all(thetas, params))
# d # change everything
thetas <- rbind(c(0, 1))
alphas <- c(1, 2)
deltas <- c(0, -1)
taus <- c(0, -1)
params <- cbind(alphas, deltas, taus)
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
pder2_mupp_all(thetas, params))
# e # multiple people RANDOM, so different each time :)
n_thetas <- 5
thetas <- matrix(r_thetas_prior(n_thetas * n_dims),
nrow = n_thetas,
ncol = n_dims)
alphas <- r_alpha_prior(n_dims)
deltas <- r_delta_prior(n_dims)
taus <- r_tau_prior(n_dims)
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims),
pder2_mupp_all(thetas, params))
# f # selecting one dimension
# - first dimension - same for everyone
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims,
picked_order_id = 1),
pder2_mupp_all(thetas, params)[1])
# - second dimension - same for everyone
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims,
picked_order_id = 2),
pder2_mupp_all(thetas, params)[2])
# - first/second dimension altering
ids <- rep(dims, length.out = n_thetas)
pder2 <- pder2_mupp_all(thetas, params)
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims,
picked_order_id = ids),
list(do.call(what = rbind,
args = lapply(seq_along(ids),
FUN = function(i)
pder2[[ids[i]]][i, , drop = FALSE]))))
# - first/second dimension random order
ids <- sample(dims, size = n_thetas, replace = TRUE)
pder2 <- pder2_mupp_all(thetas, params)
expect_equal(pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = dims,
picked_order_id = ids),
list(do.call(what = rbind,
args = lapply(seq_along(ids),
FUN = function(i)
pder2[[ids[i]]][i, , drop = FALSE]))))
# g # using grad from numDeriv
# - first dimension, first item picked
thetas <- thetas[1, , drop = FALSE]
pder2 <- numDeriv::hessian(func = function(x){
p_mupp_rank_impl(thetas = x,
params = params,
dims = c(1, 1),
picked_order_id = 1)
},
x = thetas)
pder2_a <- pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = c(1, 1),
picked_order_id = 1)[[1]]
expect_equivalent(all(abs(convert_hessian(pder2) - pder2_a) < 1e-09),
TRUE)
# - first dimension, second item picked
pder2 <- numDeriv::hessian(func = function(x){
p_mupp_rank_impl(thetas = x,
params = params,
dims = c(1, 1),
picked_order_id = 2)
},
x = thetas)
pder2_a <- pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = c(1, 1),
picked_order_id = 2)[[1]]
expect_equivalent(all(abs(convert_hessian(pder2) - pder2_a) < 1e-09),
TRUE)
# - second dimension, first item picked
pder2 <- numDeriv::hessian(func = function(x){
p_mupp_rank_impl(thetas = x,
params = params,
dims = c(2, 2),
picked_order_id = 1)
},
x = thetas)
pder2_a <- pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = c(2, 2),
picked_order_id = 1)[[1]]
expect_equivalent(all(abs(convert_hessian(pder2) - pder2_a) < 1e-09),
TRUE)
# - second dimension, second item picked
pder2 <- numDeriv::hessian(func = function(x){
p_mupp_rank_impl(thetas = x,
params = params,
dims = c(2, 2),
picked_order_id = 2)
},
x = thetas)
pder2_a <- pder2_mupp_rank_impl(thetas = thetas,
params = params,
dims = c(2, 2),
picked_order_id = 2)[[1]]
expect_equivalent(all(abs(convert_hessian(pder2) - pder2_a) < 1e-09),
TRUE)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.