Description Usage Arguments Author(s) Examples
Method to run a tSNE dimensionality reduction algorithm. A tSNE (t-distributed stochastic neighbor embedding) plot is a useful means to visualise data. As it is a dimensionality reduction algorithm, some data will be lost. It is good practice to validate any populations (namely through manual gating). Output data will be "tsne.res". Uses the R package "Rtsne" to calculate plots.
1  | run.tsne(dat, use.cols, tsne.x.name, tsne.y.name, tsne.seed, dims, initial_dims, perplexity, theta, check_duplicates, pca, max_iter, verbose, is_distance, Y_init, stop_lying_iter, mom_switch_iter, momentum, final_momentum, eta, exaggeration_factor)
 | 
dat | 
 NO DEFAULT. data.frame.  | 
use.cols | 
 NO DEFAULT. Vector of numbers, reflecting the columns to use for dimensionality reduction.  | 
tsne.x.name | 
 DEFAULT = "tSNE_X". Character. Name of tSNE x-axis.  | 
tsne.y.name | 
 DEFAULT = "tSNE_Y". Character. Name of tSNE y-axis.  | 
tsne.seed | 
 DEFAULT = 42. Numeric. Seed value for reproducibility.  | 
dims | 
 DEFAULT = 2. Number of dimensions for output results, either 2 or 3.  | 
initial_dims | 
 DEFAULT = 50. Number of dimensions retained in initial PCA step.  | 
perplexity | 
 DEFAULT = 30.  | 
theta | 
 DEFAULT = 0.5. Use 0.5 for Barnes-Hut tSNE, 0.0 for exact tSNE (takes longer).  | 
check_duplicates | 
 DEFAULT = FALSE.  | 
pca | 
 DEFAULT = TRUE. Runs PCA prior to tSNE run.  | 
max_iter | 
 DEFAULT = 1000. Maximum number of iterations.  | 
verbose | 
 DEFAULT = TRUE.  | 
is_distance | 
 DEFAULT = FALSE. Experimental, using X as a distance matrix.  | 
Y_init | 
 DEFAULT = NULL. Recommend NULL for random initialisation.  | 
stop_lying_iter | 
 DEFAULT = 250. Number of iterations of early exaggeration.  | 
mom_switch_iter | 
 DEFAULT = 250. Number of iterations before increased momentum of spread.  | 
momentum | 
 DEFAULT = 0.5. Initial momentum of spread.  | 
final_momentum | 
 DEFAULT = 0.8. Momentum of spread at 'final_momentum'.  | 
eta | 
 DEFAULT = 200. Learning rate.  | 
exaggeration_factor | 
 DEFAULT = 12.0. Factor used during early exaggeration.  | 
Felix Marsh-Wakefield, felix.marsh-wakefield@sydney.edu.au
1 2 3 4 5  | # Run tSNE on a subset of the  demonstration dataset
cell.dat <- do.subsample(Spectre::demo.asinh, 10000) # Subsample the demo dataset to 10000 cells
cell.dat <- Spectre::run.tsne(dat = cell.dat,
                              use.cols = names(demo.asinh)[c(2:10)])
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.