#' keras pooled gru
#'
#' Word embedding + spatial dropout + (pooled) gated recurrent unit
#'
#' Taken from https://www.kaggle.com/yekenot/pooled-gru-fasttext
#'
#' @param input_dim Number of unique vocabluary/tokens
#' @param embed_dim Number of word vectors
#' @param seq_len Length of the input sequences
#' @param gru_dim Number of recurrent neurons (default 64)
#' @param gru_drop Recurrent dropout ratio
#' @param bidirectional default is F
#' @param output_dim Number of neurons of the output layer
#' @param output_fun Output activation function
#' @return keras model
#'
#' @export
keras_pooled_gru <- function(
input_dim, embed_dim = 128, seq_len = 50,
gru_dim = 64, gru_drop = .2, bidirectional = F,
output_fun = "softmax", output_dim = 2
){
input <- keras::layer_input(shape = seq_len)
block <- input %>%
keras::layer_embedding(
input_dim = input_dim,
output_dim = embed_dim
#input_length = maxlen
) %>%
keras::layer_spatial_dropout_1d(0.2)
if(bidirectional){
block %<>% keras::bidirectional(keras::layer_gru(units = gru_dim, return_sequences = T))
} else {
block %<>% keras::layer_gru(units = gru_dim, return_sequences = T)
}
### global average
avg_pool <- block %>% keras::layer_global_average_pooling_1d()
### global max
max_pool <- block %>% keras::layer_global_max_pooling_1d()
output <- keras::layer_concatenate(c(avg_pool, max_pool)) %>%
keras::layer_dense(output_dim, activation = output_fun)
model <- keras::keras_model(input, output)
return(model)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.