Description Usage Arguments Value Examples
This function plots a Principal Component Analysis (PCA) from transformed expression matrix. This plot shows samples variation based on the expression values and identifies batch effects.
1 |
exploredds |
object of class |
plotly |
logical: when |
savePlot |
logical: when |
filePlot |
file name where the plot will be saved. For more information, please consult the
|
returns an object of ggplot
or plotly
class.
1 2 3 4 5 6 7 8 9 10 11 12 | ## Targets file
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment="#")
cmp <- systemPipeR::readComp(file=targetspath, format="matrix", delim="-")
## Count table file
countMatrixPath <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countMatrix <- read.delim(countMatrixPath, row.names=1)
## Plot
exploredds <- exploreDDS(countMatrix, targets, cmp=cmp[[1]], preFilter=NULL, transformationMethod="rlog")
PCAplot(exploredds, plotly = FALSE)
PCAplot(exploredds, plotly = TRUE)
PCAplot(exploredds, save = TRUE, filePlot = "pca.pdf")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.