Description Usage Arguments Value Examples
This function performs hierarchical clustering on the transformed expression matrix generated with the DESeq2 package. It uses, by default, a Pearson correlation-based distance measure and complete linkage for cluster join.
1 2 3 4 5 6 7 8 9 |
exploredds |
object of class |
clust |
sselect the data to apply the distance matrix computation.
If |
DEGlist |
List of up or down regulated gene/transcript indentifiers meeting
the chosen filter settings for all comparisons defined in data frames |
plotly |
logical: when |
savePlot |
logical: when |
filePlot |
file name where the plot will be saved. For more information, please consult the
|
... |
additional parameters for the |
returns an object of pheatmap
or plotly
class.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ### Load data
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment="#")
cmp <- systemPipeR::readComp(file=targetspath, format="matrix", delim="-")
countMatrixPath <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countMatrix <- read.delim(countMatrixPath, row.names=1)
## Samples plot
exploredds <- exploreDDS(countMatrix, targets, cmp=cmp[[1]], preFilter=NULL, transformationMethod="rlog")
heatMaplot(exploredds, clust="samples")
heatMaplot(exploredds, clust="samples", plotly = TRUE)
## Individuals genes identified in DEG analysis
### DEG analysis with `systemPipeR`
degseqDF <- systemPipeR::run_DESeq2(countDF = countMatrix, targets = targets, cmp = cmp[[1]], independent = FALSE)
DEG_list <- systemPipeR::filterDEGs(degDF = degseqDF, filter = c(Fold = 2, FDR = 10))
### Plot
heatMaplot(exploredds, clust="ind", DEGlist = unique(as.character(unlist(DEG_list[[1]]))))
heatMaplot(exploredds, clust="ind", DEGlist = unique(as.character(unlist(DEG_list[[1]]))), plotly = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.