Description Usage Arguments Value Examples
This function computes the sample-wise correlation coefficients using the
stats::cor()
function from the transformed expression values. After transformation
to a distance matrix, hierarchical clustering is performed with
the stats::hclust()
function, and the result is plotted as a dendrogram.
1 2 3 4 5 6 7 | hclustplot(
exploredds,
method = "spearman",
plotly = FALSE,
savePlot = FALSE,
filePlot = NULL
)
|
exploredds |
object of class |
method |
a |
plotly |
logical: when |
savePlot |
logical: when |
filePlot |
file name where the plot will be saved. For more information, please consult the
|
returns an object of ggplot
or plotly
class.
1 2 3 4 5 6 7 8 9 10 11 | ## Targets file
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment="#")
cmp <- systemPipeR::readComp(file=targetspath, format="matrix", delim="-")
## Count table file
countMatrixPath <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countMatrix <- read.delim(countMatrixPath, row.names=1)
## Plot
exploredds <- exploreDDS(countMatrix, targets, cmp=cmp[[1]], preFilter=NULL, transformationMethod="rlog")
hclustplot(exploredds, method = "spearman")
hclustplot(exploredds, method = "spearman", savePlot = TRUE, filePlot = "cor.pdf")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.