tests/test16_sep.R

library(nrcsrobot);
library(tsdo);
library(tsda);
library(readxl)
#加载匹配表
source('./tests/mt.R',encoding = 'utf-8');
data_tpl <- read_excel("data-raw/output/知识点导入模板.xlsx",
                       col_names = FALSE)
data_tpl <- tbl_as_df(data_tpl);
data_tpl <- data_tpl[1:2,];
col_count <- ncol(data_tpl);
col_nickName <-LETTERS[1:col_count];
names(data_tpl) <- col_nickName;




res <-read_kflog2(file = "./data-raw/input/201908B//2019-08-08 .txt");
#View(res);

res <-log_delFixAll(res);
#View(res);

#文件级的精确匹配;

res <- log_delRow_equals(res,file_filter_equal);
#View(res);

#文件级的模糊匹配
res <- log_delRow_contains(res,file_filter_like);
# View(res);
#形成qa列表

View(res);

res <- log_qaList(res,sep=row_sep);


#匹配问题
res <- question_delRow_equal(res,question_filter_equal);
#View(res);

#针对问题进行模糊匹配
res <- question_delRow_contains(res,question_filter_like );
#View(res);
#按答案进行精确匹配

res <- answer_delRow_equal(res,answer_filter_equal);
#View(res);

#按答案进行模糊匹配

res <- answer_delRow_contains(res,answer_filter_like);
#View(res);


row_count <- nrow(res);
A <- paste("捷豹路虎/",res$dlg_date,sep="");
B <- res$question;
C <- res$question;
D <- res$answer;
E <- rep("1",row_count);
F <-rep("",row_count);
G <-rep("",row_count);
H <- rep("1",row_count);
I <-rep("",row_count);
res_formatted <- data.frame(A,B,C,D,E,F,G,H,I,stringsAsFactors = FALSE);

res_output <- rbind(data_tpl,res_formatted);
#View(res_output);
openxlsx::write.xlsx(res_output,"res_output20190808.xlsx");
takewiki/nscsrobot documentation built on Oct. 6, 2020, 12:12 p.m.