#' Fit Benchmarked normal outcome model in TMB
#'
#' Fit benchmarked model with BYM2 in space, single intercept. Only allows for a single
#' benchmark, and therefore assumes one time point.Produces posterior samples for fitted values,
#' hyperparameters, random effects, and fixed effects. Simultaneous benchmarking is performed
#' via a second likelihood for the national level estimate.
#'
#' @param binom_df a dataframe containing binomial counts, and the following columns: (note to self, change this parameter
#' name since we're not working with binomial data here)
#' \itemize{
#' \item \code{y}: normally distributed outcome
#' \item \code{region}: area
#' }
#' @param y the column in \code{binom_df} corresponding to the outcome
#' @param region the column in \code{binom_df} corresponding to region/area
#' @param SE_i a vector of fixed standard errors for use in the normal likelihood. Length of
#' \code{SE_i} must be equal to the number of regions.
#' @param hiv_adj An optional log offset in time to include in the linear predictor. Defaults to
#' no log offset.
#' @param natl a national level estimate
#' @param natl_sd the standard deviation for the national level estimate
#' @param pop_weights a vector of population weights for use in the benchmarking constraint. Must
#' sum to one, and be in order arrange(region)
#' @param Q_struct_space An ICAR precision matrix. Should be scaled.
#' @param expit_outcome A boolean for whether or not the normally distributed outcome needs to be
#' expit-ed in order to be on the same scale as national estimates. This parameter will only affect
#' benchmarked models. If TRUE, linear predictors will be expit-ed before being multiplied by population
#' weights in the benchmarking constraint. This parameter must be specified by the user if
#' \code{benched = "benched"}.
#' @param nsamp Number of posterior samples to take from joint posterior. Defaults to 1000
#' @return A list containing:
#' \itemize{
#' \item fitted_mat: a matrix of posterior samples of fitted values in order arrange(region, time)
#' \item re_list: a list contaning matrices of posterior samples for each random effect term
#' \item param_list: a list containing matrices of posterior samples for fixed effects and hyperparameters
#' \item runtime: the time it took to fit the model in TMB and get samples from the joint posterior
#' }
#'
#' @author Taylor Okonek
#' @keywords internal
#' @noRd
tmb_normal_arealevel_intercepts_bym2_benched <- function(binom_df,
y = "y",
region = "admin1",
SE_i,
hiv_adj = NA,
natl,
natl_sd,
pop_weights,
Q_struct_space,
expit_outcome,
nsamp = 1000) {
N <- dim(Q_struct_space)[1]
# if hiv_adj is NA, make it 1
if (is.na(hiv_adj)) {
hiv_adj <- 1
}
# define data object
t.data <- list(model = "normal_arealevel_intercepts_bym2_benched",
N = N,
y_ic = binom_df[,y],
SE_i = SE_i,
hiv_adj = hiv_adj,
region_id = binom_df[,region],
natl = natl,
natl_sd = natl_sd,
pop_weights = pop_weights,
Q_struc_space = Q_struct_space,
risk_region_id = 1:length(unique(binom_df[,region])),
expit_outcome = as.numeric(expit_outcome))
# starting vals
t.params <- list(alpha = 0,
space_logit_phi = 0,
space_log_tau = 0,
Epsilon_s = matrix(0, ncol = 1, nrow = 2 * N))
# rand effs
t.rand <- c('Epsilon_s')
## and lastly, we can NULL out params that are in the c++ template but
## which won't be used in this run. this allows us to build up a more
## complicated template that can take different options. named items
## in the list which as set to factor(NA) will be left out
ADmap <- list()
## fit in TMB
# make AD functional
obj <- TMB::MakeADFun(data = t.data,
parameters = t.params,
random = t.rand,
map = ADmap,
hessian = TRUE,
DLL = "stbench_TMBExports")
message("Model fitting...")
begin_time <- Sys.time()
# call the optimizer
opt0 <- try(do.call("nlminb",
list(start = obj$par,
objective = obj$fn,
gradient = obj$gr,
lower = rep(-10, length(obj$par)),
upper = rep( 10, length(obj$par)),
control = list(trace=1))))
# report the estimates
# calculates standard deviations of all model parameters
SD0 <- TMB::sdreport(obj, getJointPrecision=TRUE,
getReportCovariance = TRUE,
bias.correct = TRUE,
bias.correct.control = list(sd = TRUE))
end_time <- Sys.time()
message("Post-processing...")
# get all values for things with REPORT(things); in the c++ code
R0 <- obj$report()
####### Organize results from TMB
## take TMB draws
# first obtain point estimates (means) for fixed and random effects
mu <- c(SD0$par.fixed, SD0$par.random)
# first, try to get the cholesky decomp of the joint precision (fixed and random effects)
# note that length(mu) = nrow(L) = ncol(L)
# L <- try(suppressWarnings(Cholesky(SD0$jointPrecision, super = T)), silent = TRUE)
# take the draws
# this calls on the function rmvnorm_prec, which samples from a multivariate normal
# using a cholesky decomposition - NOTE: look into this more
# returns a list containing two matrices: one with unconstrained draws, one with constrained draws
# get ids for which values of mu correspond to the structured bym2 components in space and time
struct_space_idx <- which(names(mu) == "Epsilon_s") %>% tail(N)
struct_space_both_idx <- which(names(mu) == "Epsilon_s")
# cluster_effect_idx <- which(names(mu) == "cluster_effect")
# create list of constraint matrices for these terms
A.mat.list <- list()
A.mat.list[[1]] <- matrix(1, nrow = 1, ncol = N) # space
t.draws <- multiconstr_prec(mu = mu,
prec = SD0$jointPrecision,
n.sims = nsamp,
#constrain = FALSE,
constrain.idx.list = list(struct_space_idx),
A.mat.list = A.mat.list)
# take the constrained draws
t.draws <- t.draws$x.c
# get list of draws for each random effect
re_list <- list()
re_list$struct_space <- t.draws[struct_space_both_idx, ]
t.parnames <- c(names(SD0$par.fixed), names(SD0$par.random))
# re_list$cluster_effect <- t.draws[cluster_effect_idx, ]
## separate out the tmb_draws
# NOTE: t.parnames will be the same as names(mu)
t.param.idx <- grep("alpha", t.parnames)
t.space.phi.idx <- grep("space_logit_phi", t.parnames)
t.space.tau.idx <- grep("space_log_tau", t.parnames)
# t.cluster.tau.idx <- grep("cluster_log_tau", t.parnames)
# make a list containing all draws from parameters
param_list <- list()
param_list$intercepts <- t.draws[t.param.idx, ]
param_list$space_phi <- expit(t.draws[t.space.phi.idx,])
param_list$space_tau <- exp(t.draws[t.space.tau.idx,])
# param_list$cluster_tau <- exp(t.draws[t.cluster.tau.idx,])
# estimates of tmb field
# below is the total bym2 term for space, not just the structured part
t.space.total.idx <- head(grep("Epsilon_s", t.parnames), N)
# id's for each age intercept is t.param.idx
# combine draws for linear predictor to get space/time/age risks
# this bit adds in the total for space, intercepts for each age group
e.fitted <- t.draws[rep(t.param.idx, length(t.space.total.idx)),] +
t.draws[t.space.total.idx,]
# matrix of samples of fitted values on probability scale
fitted_mat <- e.fitted
# return fitted mat, re_list, param_list
return(list(fitted_mat = fitted_mat,
re_list = re_list,
param_list = param_list,
runtime = end_time - begin_time))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.