R/get_triad_var.R

Defines functions get_triad_var

Documented in get_triad_var

#' @title Get Triad Variables
#' @description Transforms vertex variables or observed directed/undirected ties
#' into triad variables.
#' @param var variable vector (actor attribute) or adjacency matrix (ties)
#' to be transformed to a triad variable.
#' @param type either 'att' for actor attribute (default) or 'tie' for relations.
#' @return Dataframe with four columns:
#' first three columns show the vertex triad \code{u}, \code{v}, \code{w} ,
#' and the fourth column gives the value of the transformed triadic variable \code{var}.
#' @details For actor attributes, unique triples of original attribute values
#' constitute the outcome space. Note that the actor
#' attributes need to be categorical with finite range spaces.
#' For example, binary attributes have 8 possible triadic outcomes
#' (0,0,0),(1,0,0),(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)
#' which are coded 0-7.
#' Warning message is shown if actor attribute has too many unique outcomes
#' as it will yield too many possible outcomes once converted in to a triad variable.
#' \cr
#'
#' For directed relations, a sequence of indicators of length 6 created from the adjacency matrix
#' constitutes the 64 outcomes representing possible combinations of sending and receiving ties.
#' \cr
#'
#' For undirected relations, triples of indicators are created from the adjacency matrix.
#' \cr
#'
#'
#' @author Termeh Shafie
#' @seealso \code{\link{get_dyad_var}}
#' @references Frank, O., & Shafie, T. (2016). Multivariate entropy analysis of network data.
#' \emph{Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique}, 129(1), 45-63.
#' @examples
#' # use internal data set
#' data(lawdata)
#' adj.advice <- lawdata[[1]]
#' adj.cowork <- lawdata[[3]]
#' df.att <- lawdata[[4]]
#'
#' # three steps of data editing:
#' # 1. categorize variables 'years' and 'age' based on
#' # approximately three equally size groups (values based on cdf)
#' # 2. make sure all outcomes start from the value 0 (optional)
#' # 3. remove variable 'senior' as it consists of only unique values (thus redundant)
#' df.att.ed <- data.frame(
#'     status = df.att$status,
#'     gender = df.att$gender,
#'     office = df.att$office - 1,
#'     years = ifelse(df.att$years <= 3, 0,
#'         ifelse(df.att$years <= 13, 1, 2)
#'     ),
#'     age = ifelse(df.att$age <= 35, 0,
#'         ifelse(df.att$age <= 45, 1, 2)
#'     ),
#'     practice = df.att$practice,
#'     lawschool = df.att$lawschool - 1
#' )
#'
#' # actor attribute converted to triad variable
#' triad.gend <- get_triad_var(df.att.ed$gender, "att")
#'
#' # directed tie converted to triad variable
#' triad.adv <- get_triad_var(adj.advice, type = "tie")
#'
#' # undirected tie converted to triad variable
#' triad.cwk <- get_triad_var(adj.cowork, type = "tie")
#' @export

get_triad_var <- function(var, type = "att") {
    if (type == "att") {
        n <- length(var)
        triads <- t(utils::combn(1:n, 3))
        triads <- cbind(triads, var[triads[, 1]], var[triads[, 2]], var[triads[, 3]])
        triad.var <- data.frame(
            u = triads[, 1], v = triads[, 2], w = triads[, 3],
            u.var = triads[, 4], v.var = triads[, 5], w.var = triads[, 6]
        )
        triad.var$uvw <- paste(
            triad.var$u.var,
            triad.var$v.var,
            triad.var$w.var
        )
        var.matching <- apply(expand.grid(
            min(var):max(var),
            min(var):max(var),
            min(var):max(var)
        ), 1, paste, collapse = " ")
        triad.var$var <- match(triad.var$uvw, var.matching) - 1
        if (length(unique(var)) >= 7) {
            warning("consider categorizing variable as it yields too many dyadic outcomes")
        }
    } else if (type == "tie") {
        n <- dim(var)[1]
        if (isSymmetric(var) == TRUE) {
            triads <- t(utils::combn(1:n, 3))
            triads <- cbind(
                triads,
                var[triads[, c(1, 2)]],
                var[triads[, c(1, 3)]],
                var[triads[, c(2, 3)]]
            )
            colnames(triads) <- c(
                "u", "v", "w",
                "uv", "uw", "vw"
            )
            triad.var <- as.data.frame(triads)
            triad.var$uv.uw.vw <- apply(triad.var[, 4:6], 1,
                paste,
                collapse = " "
            )
            grid <- expand.grid(0:1, 0:1, 0:1)
            var.matching <- apply(
                grid, 1,
                function(x) paste(x, collapse = " ")
            )
            triad.var$var <- match(triad.var$uv.uw.vw, var.matching) - 1
            message("8 outcomes based on triples of indicators for the undirected relation are created")
        } else if (isSymmetric(var) == FALSE) {
            triads <- t(utils::combn(1:n, 3))
            triads <- cbind(
                triads, var[triads[, c(1, 2)]],
                var[triads[, c(2, 1)]],
                var[triads[, c(1, 3)]],
                var[triads[, c(3, 1)]],
                var[triads[, c(2, 3)]],
                var[triads[, c(3, 2)]]
            )
            colnames(triads) <- c(
                "u", "v", "w",
                "uv", "vu", "uw", "wu", "vw", "wv"
            )
            triad.var <- as.data.frame(triads)
            triad.var$seq <- apply(triad.var[, 4:9], 1,
                paste,
                collapse = " "
            )
            grid <- expand.grid(0:1, 0:1, 0:1, 0:1, 0:1, 0:1)
            var.matching <- apply(
                grid, 1,
                function(x) paste(x, collapse = " ")
            )
            triad.var$var <- match(triad.var$seq, var.matching) - 1
            message("64 outcomes based on a sequence of 6 indicators for the directed relation are created")
        }
    }

    out.var <- as.data.frame(cbind(triad.var$u, triad.var$v, triad.var$w, triad.var$var))
    names(out.var) <- c("u", "v", "w", "var")
    return(out.var)
}
termehs/netropy documentation built on Oct. 28, 2024, 6:04 p.m.