##--------------------------------------##
##-- CLASS DEFINITION and CONSTRUCTOR --##
##--------------------------------------##
#'@title The Smoothed_Empiric_Distribution Class
#'
#'@description A class that defines a distribution based on a set of samples from that distribution, but applies Gaussian kernel smoothers. For an unsmoothed representation, see \link{Empiric_Distribution}
#'
#'@slot points A matrix containing the samples
#'@slot weights A numeric vector with the weight given to each row in points. Sum to 1
#'@slot n.points The number of rows in points
#'
#'@seealso \link{Empiric_Distribution}, \link{Smoothed.Empiric.Distribution}
#'
#'@name Smoothed_Empiric_Distribution
#'@rdname Smoothed_Empiric_Distribution
#'@aliases Smoothed_Empiric_Distribution-class
#'@exportClass Smoothed_Empiric_Distribution
#'@export
setClass("Smoothed_Empiric_Distribution",
contains="Empiric_Distribution",
representation = list(marginal.smoothed.distributions='Joint_Independent_Distributions'))
#'@title Create an smoothed empiric distribution from a set of samples
#'
#'@param points A matrix of values, where each row represents one sample and each column represents one variable. If a numeric vector is passed, assumed to be samples from a univariate distribution
#'@param weights A numeric vector of weights, one for each row in points
#'@param var.names The names of the variables in the distribution. If NULL, uses the column names from points
#'
#'@family Distribution Constructors
#'
#'@export
Smoothed.Empiric.Distribution <- function(points, weights=1, var.names=NULL,
bandwidth.multipliers=1)
{
if (is.null(dim(points)))
points = matrix(points, ncol=1)
n.points = dim(points)[1]
if (length(weights)==1)
weights = rep(1, n.points)
if (length(weights)!=n.points)
stop("weights must have one value for each row in points")
if (any(is.na(points)))
stop("points cannot contain NA values")
if (any(is.na(weights)))
stop("weights cannot contain NA values")
weights = weights / sum(weights)
if (is.null(var.names) && !is.null(dim(points)))
var.names = dimnames(points)[[2]]
create.distribution(subclass='Smoothed_Empiric_Distribution',
var.names=var.names,
n.var=dim(points)[2],
lower.bounds = apply(points, 2, min),
upper.bounds = apply(points, 2, max),
is.discrete=T,
is.improper=F,
points=points,
weights=weights,
n.points=n.points)
}
##-----------------------------##
##-- METHODS IMPLEMENTATIONS --##
##-----------------------------##
setMethod('do.calculate.density',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, x, log=F, n.sim=1000)
{
rv = apply(x, 1, function(one.x){
row.equals = apply(dist@points, function(one.points){
all(one.points==one.x)
})
sum(row.equals * dist@weights)
})
if (log)
log(rv)
else
rv
})
setMethod('do.calculate.cdf',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, q, lower.tail=T, log.p=F, n.sim=1000)
{
rv = apply(q, 1, function(one.q){
include.row = apply(dist@points, function(one.points){
if (lower.tail)
all(one.points<=one.q)
else
all(one.points>=one.q)
})
sum(include.row * dist@weights)
})
if (log.p)
log(rv)
else
rv
})
setMethod('do.get.quantiles',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, p, lower.tail=T, log.p=F, n.sim=1000)
{
if (log.p)
p = exp(p)
apply(dist@points, 2, function(x){
o = order(x, decreasing = !lower.tail)
sorted.points = x[o]
cum.weight = cumsum(dist@weights[o])
sapply(p, function(one.p){
if (one.p < 0 || one.p > 1)
NaN
else
sorted.points[one.p <= cum.weight][1]
})
})
})
setMethod('do.generate.random.samples',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, n)
{
indices = sample(1:dist@n.points, n, replace = T)
dist@points[indices,]
})
setMethod('do.get.covariance.matrix',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, n.sim=1000)
{
sample.means = get.means(dist)
normalizing.constant = 1 / (1 - sum(dist@weights^2))
sapply(1:dist@n.points, function(i){
sapply(1:dist@n.points, function(j){
sum(dist@weights * (dist@points[,i]-sample.means[i]) * (dist@points[,j]-sample.means[j]))
})
}) * normalizing.constant
})
setMethod('do.get.sds',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, n.sim=1000)
{
sample.means = get.means(dist)
normalizing.constant = 1 / (1 - sum(dist@weights^2))
variances = sapply(1:dist@n.points, function(i){
sum(dist@weights * (dist@points[,i]-sample.means[i])^2)
}) * normalizing.constant
sqrt(variances)
})
# do.get.medians and do.get.equal.tailed.intervals use the default implementations
setMethod('do.get.means',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, n.sim=200)
{
colSums(dist@points * dist@weights)
})
setMethod('do.get.highest.density.intervals',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, coverage=0.95, n.sim=1000)
{
do.get.highest.density.interval.from.samples(samples=dist@points, coverage=coverage, weights=dist@weights)
})
setMethod('do.calculate.marginal.densities',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, x, log=F, n.sim=1000)
{
rv = apply(1:dist@n.var, function(i){
sapply(x, function(one.x){
sum(dist@weights * (dist@points[,i]==one.x))
})
})
if (log)
log(rv)
else
rv
})
setMethod('do.calculate.marginal.cdfs',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, q, lower.tail=T, log.p=F, n.sim=1000)
{
rv = apply(1:dist@n.var, function(i){
sapply(q, function(one.q){
if (lower.tail)
sum(dist@weights * (dist@points[,i]<=one.q))
else
sum(dist@weights * (dist@points[,i]>=one.q))
})
})
if (log.p)
log(rv)
else
rv
})
setMethod('do.subset.distribution',
signature(dist='Smoothed_Empiric_Distribution'),
def=function(dist, keep.indices)
{
create.empiric.distribution(points=dist@points[,keep.indices],
weights=dist@weights,
var.names=dist@var.names[keep.indices])
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.